UW Undergraduate Research Program

<<< URP Home

Students in Research
See more URP photos!

URP Advising




Creative Commons License
The Undergraduate Research Program website, created by the Undergraduate Research Program at the University of Washington, is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Permissions beyond the scope of this license are available at exp.washington.edu/urp/about/rights.html

The Levinson Emerging Scholars Program

Jennifer Gile - Neurobiology

Jennifer Gile Jennifer Gile is a senior majoring in Neurobiology. She transferred from the Johns Hopkins University after her freshman year. She works in the de la Iglesia laboratory, which focuses on the pathways by which the central nervous system controls the timing of behavior and physiology. Her area of research is in circadian biology, with a current research focus on the circadian modulation of neuromotor control. The goal of this research project is to understand how the circadian system regulates the primary motor cortex programs. This will be essential for the design of BCI (brain computer interface). Jennifer is a Gates Millennium Scholar who makes several trips back to her old high school in Idaho to educate diverse populations of students about the scholarship and inspire them to realize the value of a college education. Jennifer would like to thank her wonderful mentors Dr. De la Iglesia, Dr. Smarr, Dr. Chizeck, and Oliver Johnson. She would also like to thank the Levinson Scholarship for the support. All of this would not be possible without their support. She is planning on pursuing an M.D./Ph.D. upon graduation in Winter 2015.

Mentor: Horacio de la Iglesia, Biology

Project Title: Circadian Modulation of Neuromotor Control

Abstract: The circadian system controls daily rhythms of behavior and physiology, including locomotor activity and motor-task performance. The master regulation of these rhythms is achieved by a circadian clock located in the suprachiasmatic nucleus of the hypothalamus; however, it is not clear how motor tasks are programmed by the motor cortex at different times of the day. Our hypothesis is that similar motor tasks executed at different times of the day may require different motor programs to account for the daily variance introduced by the circadian system. How and where in the brain this variance in motor control manifests has not been established. We propose to identify specific primary motor cortex activity patterns associated with specific motor outputs across the 24-hour day. We implant electrocorticographic (ECoG) electrodes onto the motor cortex of mice and record brain wave activity during wheel running and rest. We first test whether the motor cortex may show a brain-wave signature for wheel running, and second whether this signature may change predictably across the 24-hour day. Initial results indicate a broad-spectrum power increase in brain-wave output from the motor cortex associated with wheel running. Furthermore, there appears to be a circadian modulation of the power of specific ECoG frequencies. The decoding of motor cortex signals is at the core of the design of brain-machine interfaces (BMIs). These devices decode signals from the conscious brain to drive the execution of specific tasks by a machine, such as an artificial limb. Our work will directly contribute to our understanding of how the motor cortex decodes circadian time. This knowledge is essential to create BMIs that can operate effectively throughout the 24-hour day to execute tasks by brain-operated artificial devices.