UW Undergraduate Research Program

<<< URP Home

Students in Research
See more URP photos!

URP Advising

Creative Commons License
The Undergraduate Research Program website, created by the Undergraduate Research Program at the University of Washington, is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Permissions beyond the scope of this license are available at exp.washington.edu/urp/about/rights.html

The Levinson Emerging Scholars Program

Eric Secrist - Biology and Physiology

Daniel KashimaEric Secrist is a senior at UW who has always been intrigued by the nervous system, particularly the areas which are not fully understood. He began working in Dr. Chet Moritzís spinal cord injury lab in the rehabilitation medicine department during his sophomore year in order to pursue this curiosity. With assistance from Dr. Moritz and Dr. Mike Kasten, Eric developed and is currently conducting a brain-computer-interface experiment which links dopamine releasing medial forebrain bundle stimulation with functional movements of an impaired limb. The hope is that this research will contribute to the development of novel therapies for people with partial spinal cord injuries to regain movement in their arms and hands. After graduating this spring with a degree in Physiology and a minor in Bioethics and Humanities, Eric hopes to go to medical school and continue following his interest in neuroscience by becoming a neurologist.

Mentor: Chet Moritz, Rehabilitation Medicine and Physiology

Project Title: Dopamine Mediated Plasticity and Its Role in Recovery from Cervical Spinal Cord Injury

Abstract: Thanks to advances in safety equipment and emergency care, most spinal cord injuries that occur in people today are incomplete, leaving a portion of the spinal cord neural tissue intact. Further, recent research has shown that there is plasticity and axonal sprouting following injury, expanding the possibilities for rehabilitation from what was once considered a permanent and unrecoverable injury. Our goal is to enhance this process and work towards functional recovery. Dopamine, a powerful neurotransmitter involved in processes such as learning, memory and motivation, plays an integral role in brain plasticity. We are currently testing whether pairing dopamine release with functional movements can increase plasticity of the remaining active pathways and lead to increased functional recovery following an injury. We will test this by comparing the recovery of two groups of rats following partial cervical spinal cord contusion injuries in only one forelimb. Both groups of animals will receive dopamine-releasing electrical brain stimulation. For one group this stimulation will be synchronized with movements of the impaired limb. These rats will activate the stimulation by using their impaired forelimb to push a lever. The other group will receive stimulation at a time separate from desired forelimb movements, but will still have to push the lever in order to receive it. In both groups this stimulation will activate the medial forebrain bundle, a pathway in the brain strongly associated with dopaminergic pathways. The two groups will be compared on their ability to perform specific motor tasks with the injured forelimb. We hope to someday apply the knowledge we gain from this experiment to develop novel ways to promote nervous system recovery from injury by using dopaminergic pathways to reinforce neural plasticity. This may lead to therapies which allow people with incomplete spinal cord injuries to improve their fine motor skills.