This report is based on data collected within the AccessSTEM/AccessComputing/DO-IT Longitudinal Transition Study (ALTS). It tracks the college and career pathways of students with disabilities who have participated in activities sponsored by projects of the DO-IT Center at the University of Washington (UW) in Seattle. Students are added to the study as they enter DO-IT programs and agree to participate in this research activity. To date, 472 students with a wide range of disabilities have agreed to participate in this ongoing study.
In the ALTS study participants are asked about educational and career pathways and outcomes. Additionally, they are asked to identify the DO-IT activities they participated in and rate the value of the activities. As this database grows, both in number of participants and number of interviews per participant, it is expected to reveal the long-term impact of DO-IT’s program activities. That is, it will indicate which activities participants consider most beneficial and which are most important for achieving positive postsecondary outcomes. This report is an update of the initial 2007 report, the 2009 report, 2010 report, and the 2011 report.
The AccessSTEM/AccessComputing/DO-IT Longitudinal Transition Study was developed with funding from the Research in Disabilities Education program of the NSF (award HRD-0227995 and HRD-0833504) for the Alliance for Student with Disabilities in Science, Technology, Engineering, and Mathematics (AccessSTEM). The DO-IT Scholars program, in which many study respondents participated, has been primarily funded by the National Science Foundation, NASA, Microsoft, Boeing Company, and the State of Washington. The Alliance for Access to Computing Careers (AccessComputing), funded by NSF’s Directorate for Computer and Information Sciences and Engineering (grant #CNS-0540615, CNS-0837508, and CNS-1042260). The ALTS continues to be maintained by AccessSTEM, AccessComputing, and the State of Washington.
Specific research questions of the ALTS are:
Figure 2 shows the percentage of participating students reporting one (63%), two (30%) or three or more (7%) disabling conditions.
Figure 3 shows the participants’ educational status when they entered DO-IT. Six (1%) began participation in DO-IT activities in middle school, 306 (65%) in high school, 134 (29%) as college undergraduates or in their transition summer between high school and college, 21 (4%) as graduate or law students, and 3 (1%) as post graduates or job seekers.
Program Participation and Value of Interventions
Respondents participated in the following evidence-based practices.
Nine DO-IT staff members who worked the most on multiple activities with DO-IT participants were also asked to rate the value of these program activities. Table 1 and Figure 4b show the results, with activities listed in the same order as above.
Table 1. Perceived Value of DO-IT Interventions as Rated by DO-IT Staff
Program activities
Not valuable
Somewhat valuable
Valuable
Very valuable
Note: Participants and staff rated all interventions highly; even the lowest rated item, career transitions workshops/camps, was rated valuable or very valuable by 75% of participants and 89% of the staff.
Access to computer technology
0.0% (0)
0.0% (0)
33.3% (3)
66.7% (6)
Internship, other work-based learning
0.0% (0)
0.0% (0)
22.2% (2)
77.8% (7)
Mentoring
0.0% (0)
0.0% (0)
11.1% (1)
88.9% (8)
College transition workshops/camps
0.0% (0)
0.0% (0)
0.0% (0)
100.0% (9)
Career transition workshops/camps
0.0% (0)
11.1% (1)
33.3% (3)
55.6% (5)
High School Completion
Overall, 424 ALTS respondents were known to have graduated from high school at the time of the most recent interview. Most ALTS respondents (313; 66%) enrolled in a DO-IT program prior to high school graduation. Of the 296 who were eligible both to graduate and participate in a second interview, 90% have confirmed high school graduation. The remaining 31 students have not yet been re-interviewed. Twenty-one of these remaining 31 students (68%) earned academic and other achievement awards in high school, suggesting school success. However, these students have not been available for a follow up interview. Thus the available data indicate a 100% high school completion rate of those who have been contacted and a 90% high school completion rate of all eligible students.
In comparison, according to the NLTS, the high school completion rate for youth with disabilities in 1987 54%, up to 70% in 2003 according to the NLTS2. A nationwide survey of individuals with disabilities (NOD, 2004) reported that students with disabilities drop out of high school at a rate that is double than that of the general population (21% vs. 10%). According to the National Center for Education Statistics the rate of high school completion in the general population was 83.9% in 1980, up to 89.9% in 2008 (NCES, NCES2). Among the ALTS respondents who completed high school, five (1%) mentioned completing high school by passing a high school equivalency exam (e.g., GED) as compared to the national rate of 5.5% in 2008 (NCES). These students entered the DO-IT program as undergraduates.
Postsecondary Education Participation and Graduation
The following data was reported by the 424 high school graduates interviewed:
Comparisons between ALTS respondents and other datasets (NSF and the National Longitudinal Transition Study) (SRI International, 1987-1993) show:
In contrast, Figures 7 and 8 show that employed ALTS respondents were more likely to participate in DO-IT activities and they participated more often than those who were not yet employed. It should be noted that some of this participation may relate to other differences between the groups such as age or years in college. However, even controlling for those factors, the overall picture remains that employed respondents seemed to experience less support prior to DO-IT involvement, and once support is made available, they seem to engage more.
Specifically, Figure 7 shows that employed respondents were more likely to be DO IT Scholars; they received more training in hardware or software and more tech support; and they were more likely to participate in conferences, workshops, panels, and in pre-employment activities such as job preparation, informational interviews, and job shadows. Further, they were somewhat more likely to participate in all other activities, though the other differences did not reach statistical significance.
Figure 8 shows differences in level of participation in DO-IT activities. Though ALTS respondents who are not employed indicated more participation with DO-IT peers, employed respondents reported that they participated in more conferences, workshops, panels, informational interviews and job shadows.
Finally, employed respondents rated college transition workshops and/or camps (53% vs. 39% “Very valuable”) and mentoring (53% vs. 45% “Very valuable”) as significantly more valuable than did those who were not yet employed.
Summary and Discussion of ALTS Results To Date
Program Participation and Value of Interventions
Analysis of data collected in the AccessSTEM/AccessComputing/DO-IT Longitudinal Transition Study reveals that a large majority of respondents had access to computers and the Internet before participation in program activities. However, few had access to adaptive software or hardware before participation (31%) while most did after participation in program activities (64%).
Respondents made significant gains regarding access to mentors as a result of program participation (from 55% to 92%).
Respondents rated the evidence-based practices employed by DO-IT highly between valuable and very valuable to them in their pursuit of postsecondary studies and careers. Using a scale from 1 (not valuable) to 4 (very valuable), participants gave the following average ratings:
Figure 10 shows a pattern of change in STEM degrees awarded similar to the pattern of change in STEM majors. All groups show an increase in the number of STEM degrees since 1991, with a much steeper increase among students with disclosed disabilities at both the graduate and undergraduate level, than among their classmates without disclosed disabilities. The increase in STEM graduate and undergraduate degrees among students with disclosed disabilities continued their sharp increases since the beginning of AccessSTEM, while the number of their peers without disclosed disabilities continued to rise more modestly.
References
Berkner, L., Wei, C. C., He, S., Cominole, M., & Siegel, P. (2005). 2003-04 National postsecondary student aid study (NPSAS:04): Undergraduate financial aid estimates for 2003-04 by type of institution (NCES2005-163). U.S. Department of Education. Washington, DC: National Center for Educational Statistics.http://nces.ed.gov/pubs2005/2005163.pdf
Burgstahler, S. (2001). A collaborative model promotes career success for students with disabilities: How DO-IT does it. Journal of Vocational Rehabilitation,16(129), 1-7.
Burgstahler, S. (2002). The value of DO-IT to kids who did it! Exceptional Parent, 32(11), 79-86.
Burgstahler, S. (2003). DO-IT: Helping students with disabilities transition to college and careers. National Center on Secondary Education and Transition Research to Practice Brief, 2(3).
Burgstahler, S., Bellman, S., & Lopez, S. (2004). Research to practice: DO-IT prepares students with disabilities for employment. NACE Journal, 65(1).http://www.naceweb.org/Publications/Journal/2004october/Research_to_Practice__DO-IT_Prepares_Students_With_Disabilities_for_Employment.aspx?referal=
Burgstahler, S., & Chang, C. (2009). Promising interventions for promoting STEM fields to students who have disabilities. Review of Disability Studies An International Journal, 5(2), 29-47.
Burgstahler, S., & Chang, C. (2007) A preliminary report of the AccessSTEM/DO-IT Longitudinal Transition Study (ALTS) available at https://www.washington.edu/doit/programs/accessstem/resources/accessstemdo-it-longitudinal-transition-study-alts/preliminary-report
Burgstahler, S., & Cronheim, D. (2001). Supporting peer-peer and mentor-protégé relationships on the Internet. Journal of Research on Technology in Education, 34(1), 59-74.
Burgstahler, S., & Doyle, A. (2005). Gender differences in computer-mediated communication among adolescents with disabilities: Science, technology, engineering, and mathematics case study. Disability Studies Quarterly, 25(2). https://dsq-sds.org/article/view/552/729
Committee on Equal Opportunities in Science and Engineering (CEOSE). (2004). Broadening participation in America's science and engineering workforce. The 1994-2003 Decennial and 2004 Biennial Reports to Congress.
Grubb, W.N. (1999). Learning and earning in the middle: The economic benefits of sub-baccalaureate education. New York: Columbia University, Community College Research Center.
Kim-Rupnow, W. S., & Burgstahler, S. (2004). Perceptions of students with disabilities regarding the value of technology-based support activities on postsecondary education and employment. Journal of Special Education Technology, 19(2), 43-56.
National Center for Education Statistics (NCES) (2010). The condition of education 2010 (NCES 2010028). Washington, DC: U.S. Department of Education.https://nces.ed.gov/pubs2010/2010028.pdf
NCES. (2010, December). Trends in High School Dropout and Completion Rates in the United States: 1972–2008, Compendium Report. Washington, DC: U.S. Department of Education. http://nces.ed.gov/pubs2011/2011012.pdf
National Organization on Disability (NOD). (2004). The 2004 National Organization on Disability/Harris Survey of Americans with disabilities. Washington, DC: Author. https://www.mott.org/grants/national-organization-on-disability-2004-n-o-d-harris-survey-of-americans-with-disabilities-200302397/
SRI, International (1987-1993). National longitudinal transition study (NLTS). Menlo Park, CA: Author. https://nlts2.sri.com/reports/nlts_report.html
- Educational Achievements
- What are the educational achievements of participants in DO-IT interventions?
- Do they differ from other youth with disabilities with regard to educational achievements?
- Employment Outcomes
- What are the employment outcomes of participants in DO-IT interventions?
- Do they differ from other youth with disabilities with regard to employment achievements?
- Interventions
- Which interventions are regarded as most valuable?
- Are patterns evident linking student demographics or interests with the intervention(s) used and their perceived value, or with student pathways?
- Is there evidence of how interventions might be improved or expanded to be more beneficial or more broadly beneficial?
- Caucasian/White (71.2%),
- Asian and Pacific Islander (11.5%),
- Hispanic (5.8%),
- African American/Black (5.4%),
- American Indian (1.1%),
- Multi-ethnic (5.0%), and
- No response (2.1%).



- Technology access. Although 91% of the respondents had access to a computer before they participated in program activities, 54% reported that DO-IT provided them with computer equipment after joining DO-IT. Further 49% said they received training from DO-IT on their computer or software and 44% said they received tech support from DO-IT. Eighty-six percent had access to the Internet before they joined DO-IT and 97% said they had Internet access after joining, 5% from DO-IT. The percentage of the respondents in the current study with access to assistive software or hardware was quite low before DO-IT participation (31%), up to 63% after participation in program activities. Forty-two percent reported that these assistive technologies were provided at least in part by DO-IT. Adaptive software available to project participants includes scanning/reading, word prediction, mind mapping/outlining, speech recognition, and screen magnification software. Adaptive hardware includes alternative keyboards and mice, use of a braille embosser, a portable digital assistant, and an augmentative communication device.
- Internships and Other Work-Based Learning. Three-hundred and twelve (66%) of respondents completed at least one internship, and 76% of these students reported that at least one of their internships was provided by DO-IT. Of the 663 internships completed, 370 were developed through DO-IT projects. The total number of internships completed by each respondent ranged from one to ten. Fifty-nine percent of the participants with internships (39% of the participants overall) had paid internships.
- Mentoring. Ninety-two percent of respondents reported having access to mentors during program participation, up from 55% with either an adult mentor or peer group support before participation. All 272 DO-IT Scholars indicated that they participated in internetworking and mentoring.
- College and Career Transition Workshops/Camps. Eighty-two percent of the respondents indicated that they participated in a college or career transition workshop.
- Other STEM Activities. In addition to the aforementioned experiences provided through DO-IT, 34% of the respondents reported that they were involved in extracurricular STEM service groups, clubs, or other activities that were not sponsored by AccessSTEM, AccessComputing, DO-IT Scholars, or other DO-IT programs.


- 96% (409) enrolled in college, with 79% of these attending four-year colleges and 52% attending two-year colleges.
- 52% (214) of the 409 ALTS respondents who have enrolled in college have each earned between one and three degrees for a total of 285 degrees. Eight individuals have each earned three degrees, 55 individuals have each earned two degrees, and 151 individuals have each earned one degree.
- 56% (230) were still enrolled or enrolled in another college or graduate program
- A total of 37%/67%/58% of ALTS respondents at two-year/four-year/graduate schools majored or minored in STEM.
- 214 have earned 285 postsecondary certificates/degrees; 145 (51%) of these degrees were in STEM fields.

- ALTS participants attend college at a higher rate: 409 (96%) of ALTS' 424 high school graduates attended college; 374 (93%) of these, within two years from high school graduation. By comparison, 77% of the NLTS participants had postsecondary goals in high school, and fewer than one third of these (31%) took a postsecondary course within two years after high school.
- ALTS participants are about as likely to start their postsecondary education at a technical or two-year college program as at a four-year institution (214 vs. 195). About half of both NLTS and ALTS participants who attended postsecondary school did so at a technical/two-year college.
- About half (52%) of the participants who were no longer enrolled in college were employed (n=100). These 100 participants had participated in significantly more internships than their 84 out-of-school counterparts who were not employed (2.4 vs. 1.4). Of those still enrolled in college (n=218), only 44 were employed and those 44 also had significantly more internships than their still-enrolled counterparts who were not employed (1.7 vs. 1.2).
- Among those not still enrolled in college, 58% of those who participated in extracurricular STEM organizations and activities were employed, slightly more than those who did not participate in such organizations (52%). Among those still enrolled in college, 23% were employed, whether or not they participated in extracurricular STEM activities and organizations.
- Sixty-three percent of participants who had transitioned to college had majored or minored in a STEM program. This figure was about the same for participants who were still enrolled or no longer enrolled (64% vs. 62%) and for participants who were employed or not (65% vs. 64%).
- Employed respondents are older (27 vs. 24 years), and had completed significantly more years of college.



- access to computer technology (3.7),
- work-based learning (3.5),
- college transition workshops/camps (3.3),
- mentoring (3.3), and
- career transition workshops/camps (3.0).
- Parents of DO-IT Scholars reported that DO-IT increased their children's interest in college; awareness of career options; self-esteem; and self-advocacy, social, academic, and career/employment skills (Burgstahler, 2002).
- DO-IT Scholars reported that DO-IT participation helped them prepare for college and employment; develop Internet, self-advocacy, computer, social, and independent living skills; increase awareness of career options; and increase self-esteem and perseverance (Burgstahler, 2003; Kim-Rupnow & Burgstahler, 2004).
- DO-IT Scholars reported the greatest effects of the Summer Study to be the development of social skills, followed by academic and career skills; and the greatest effects of the year-round computer and Internet activities to be the development of career skills, followed by academic and social skills (Burgstahler, 2003; Kim-Rupnow & Burgstahler, 2004).
- DO-IT Scholars considered themselves significantly improved in academic skills, social skills, levels of preparation for college and employment, levels of awareness of career options, and personal characteristics such as perseverance and self-esteem during the course of their participation in the DO-IT Scholars program, as demonstrated by their ratings at the following three time points—before their involvement in DO-IT, immediately following their first DO-IT Summer Study, and at the time they were surveyed (Kim-Rupnow & Burgstahler, 2004).
- DO-IT Scholars reported positive characteristics of email communication for peer and mentor support. Positive aspects of email included being able to stay close to friends and family; to get answers to specific questions; to meet people from around the world; to communicate quickly, easily, and inexpensively with many people at one time; and to communicate independently without disclosing their disabilities (Burgstahler & Cronheim, 2001; Burgstahler & Doyle, 2005). They predicted that access to the Internet would contribute to their success in college and careers, and reported that peer and mentor relationships provided psychosocial, academic, and career support, and furthered their academic and career interests (Burgstahler, 2003; Burgstahler & Cronheim, 2001; Burgstahler & Doyle, 2005; Kim-Rupnow & Burgstahler, 2004). In particular, most reported that DO-IT Mentors stimulated interests in STEM (Burgstahler & Cronheim, 2001; Burgstahler & Doyle, 2005).
- Those who participated in work-based learning opportunities reported increased motivation to work toward a career; knowledge about careers and the workplace; job-related skills; ability to work with supervisors and coworkers; and skills in self-advocating for accommodations (Burgstahler, 2001; Burgstahler, Bellman, & Lopez, 2004).
- DO-IT Mentors reported topics discussed with Scholars include STEM, college issues, disability-related issues, careers, computers, assistive technology, and the Internet (Burgstahler & Cronheim, 2001).
- Nearly half (45%) of those who did not report a strong STEM interest when they joined DO-IT declared a STEM major or minor in college, as did about two-thirds (69%) of those who joined DO-IT with a strong interest.
- Males and females were equally likely to indicate a strong interest in STEM; however, significantly more male respondents identified STEM career goals (60% vs. 42%) and significantly more males declared STEM majors or minors in college (72% vs. 53%).
- Although respondents with learning disabilities were as likely as respondents with other types of disabilities to report a strong interest in STEM, significantly fewer reported a STEM career goal (42% vs. 54%) or declared a STEM major (51% vs. 66%). Respondents with a mobility disability were less likely to report a strong STEM interest (44% vs. 62%), a STEM career goal (37% vs. 62%), or declare a STEM major or minor in college (52% vs. 70%). Students with psycho-social disabilities were somewhat but not significantly more likely to have joined DO-IT with a strong STEM interest (63% vs. 53%), and significantly more reported a STEM career goal (67% vs. 48%) and declared a STEM major or minor (72% vs. 60%). Students with a visual disability were also somewhat more likely to indicate a strong STEM interest (67% vs. 54%), and significantly more likely to indicate a STEM career goal (67% vs. 50%) and declare a STEM major or minor (76% vs. 61%).
- Participants with a strong STEM interest and with a STEM career goal were more likely to declare a STEM major or minor than other students (STEM interest: 78% vs. 45%; STEM career goal: 80% vs. 45%).
- More students with a strong STEM interest rated mentoring as “very valuable” than those who did not indicate a strong STEM interest (54% vs. 40%). More of these students also rated access to computer technology as “very valuable” (79% vs. 68%).
- the lack of a control group;
- UW records do not identify all students with disabilities. Only those students who request accommodations through Disability Resources for Students (DRS) are flagged in UW records as having a disability. These are estimated to be no more than one-third of the total number of students with disabilities at the UW. Thus two-thirds of the UW’s students with disabilities will appear in the "without disabilities" group. From the perspective of a between groups analysis, the effect is to blur the differences between groups such that approximately two-thirds of any differential impact on students with disabilities will appear in the group of students without disabilities;
- Comparisons of percent changes can be misleading and must be made cautiously when comparing groups of dramatically different sizes. Small groups can show dramatic percentage changes more easily than large groups;
- Finally, correlations between program participation and outcomes do not necessarily imply causation.
- Degrees: The number of undergraduates with disclosed disabilities receiving STEM degrees increased almost ten-fold (873%) since 1991, compared with an almost doubling (93%) of undergraduates without disclosed disabilities receiving STEM degrees. This change is more dramatic among graduate students where the number of students with disclosed disabilities earning a STEM graduate degree increased 15 times (1400%), compared with just over a two-fold increase (103%) among graduate students without a disclosed disability during the same period.
- Majors: STEM majors among students with disclosed disabilities increased eight and one-half times for undergraduates (756%) and for graduate students (771%), while it doubled for undergraduates students without disclosed disabilities (102%) and increased 75% for graduate students without disclosed disabilities.
- Degrees: The number of undergraduates with disclosed disabilities receiving a STEM degree has increased more than four times (312%) since 2002 while the number of undergraduates without disclosed disabilities increased by 45%. At the graduate level, six times (500%) more students with disclosed disabilities received graduate STEM decrees in 2015 than in 2002, compared with a 62% increase among graduate students without a disclosed disability.
- Majors: The number of undergraduates with disclosed disabilities declaring a STEM major has increased seven-fold (597%) since 2002 compared with a 63% increase among their peers without disclosed disabilities. The graduate level has seen an increase of four and one-half times (369%) in the number of STEM students with disclosed disabilities, compared with half as many again of graduate students without disclosed disabilities.
- Degrees: The number of undergraduate students with disclosed disabilities earning STEM degrees increased two and one-half times (146%) between 2010 and 2015 compared with a 23% increase in STEM degrees among their peers without disclosed disabilities. A similar pattern emerged at the graduate level with a 131% increase in graduate STEM decrees awarded to students with disclosed disabilities, compared with a 72% increases in STEM degrees awarded to their peers without disclosed disabilities.
- Majors: The number of STEM majors with disclosed disabilities increased more than four times (326%) between 2010 and 2015, compared with a 43% increase among their peers without disclosed disabilities. At the graduate level, three and a half times as many (or 249% more) students with disclosed disabilities declared STEM majors in 2015 than in 2010, compared with a 56% increase among their peers without a disclosed disability.

