Skip to content

Researchers have discovered that light — from a laser — can trigger a form of magnetism in a normally nonmagnetic material. This magnetism centers on the behavior of electrons “spins,” which have a potential applications in quantum computing. Scientists discovered that electrons within the material became oriented in the same direction when illuminated by photons from a laser. By controlling and aligning electron spins at this level of detail and accuracy, this platform could have applications in quantum computing, quantum simulation and other fields. The experiment, led by scientists at the University of Washington, the University of Hong Kong and the Pacific Northwest National Laboratory, was published April 20 in Nature.

Researchers at the University of Washington, the U.S. Naval Research Laboratory and the Pacific Northwest National Laboratory discovered that they can use extremely high pressure and temperature to introduce other elements into nanodiamonds, making them potentially useful in cell and tissue imaging, as well as quantum computing.

The University of Washington, the Pacific Northwest National Laboratory and Microsoft Quantum announced this week that they have joined forces in a new coalition, the Northwest Quantum Nexus, to bring about a revolution in quantum research and technology.

A new collaborative study led by a research team at the Pacific Northwest National Laboratory, University of California, Los Angeles and the University of Washington could provide engineers new design rules for creating microelectronics, membranes and tissues, and open up better production methods for new materials.

The U.S. Department of Energy has awarded an expected $10.75 million, four-year grant to the University of Washington, the Pacific Northwest National Laboratory and other partner institutions for a new interdisciplinary research center to define the enigmatic rules that govern how molecular-scale building blocks assemble into ordered structures and give rise to complex hierarchical materials.

The Department of Energy’s Pacific Northwest National Laboratory and the University of Washington announced the creation of the Northwest Institute for Materials Physics, Chemistry and Technology — or NW IMPACT — a joint research endeavor to power discoveries and advancements in materials that transform energy, telecommunications, medicine, information technology and other fields.

Crystals play an important role in the formation of substances from skeletons and shells to soils and semiconductor materials. But many aspects of their formation are shrouded in mystery. Scientists have long worked to understand how crystals grow into complex shapes. Now, an international group of researchers has shown how nature uses a variety of pathways to grow crystals beyond the classical, one-piece-at-a-time route. “Because crystallization is a ubiquitous phenomenon across a wide range of scientific disciplines, a shift in…