UW News

May 13, 2016

Proton-conducting material found in jelly that fills organs of sharks, skates and rays

Image of the ampullae of Lorenzini found in sharks, skates and rays.

A network of electrosensory organs called the ampullae of Lorenzini allows sharks and skates to locate their prey by detecting weak electrical fields. An individual ampulla consists of a surface pore connected to a set of electrosensory cells by a long, jelly-filled canal.University of California, Santa Cruz

Sharks, skates and rays can detect very weak electric fields produced by prey and other animals using an array of unusual organs known as the ampullae of Lorenzini. Exactly how these electrosensory organs work has remained a mystery, but a new study co-authored by University of Washington researchers has revealed an important clue that may have implications for other fields of research.

The ampullae of Lorenzini are visible as small pores in the skin around the head and on the underside of sharks, skates and rays (known as elasmobranchs, a subclass of cartilaginous fish). Each pore is connected to a set of electrosensory cells by a long canal filled with a clear, viscous jelly.

In the new study, published May 13 in Science Advances, a team of researchers from the UW, the University of California, Santa Cruz and the Benaroya Research Institute at Virginia Mason in Seattle investigated the properties of this jelly. They found that the jelly is a remarkable proton-conducting material, with the highest proton conductivity ever reported for a biological material. Its conductivity is only 40 times lower than the current state-of-the-art proton-conducting polymer Nafion, said corresponding author Marco Rolandi, a UW affiliate associate professor of materials science and engineering and an associate professor of electrical engineering at UC Santa Cruz.

“The observation of high proton conductivity in the jelly is very exciting,” Rolandi said. “We hope that our findings may contribute to future studies of the electrosensing function of the ampullae of Lorenzini and of the organ overall, which is itself rather exceptional.”

The integration of signals from several ampullae allows sharks, skates and rays to detect changes in the electric field as small as 5 nanovolts per centimeter. But how such weak signals are transmitted from the pore to the sensory cells has long been a matter of debate. The researchers speculate that sulfated polyglycans in the jelly may contribute to its high proton conductivity.

Proton conductivity is the ability of a material or solution to conduct protons (positive hydrogen ions). In a system with very many ordered hydrogen bonds, such as a hydrated hydrophilic polymer, proton conduction can occur along chains of these bonds, Rolandi explained. In technological applications, proton conductors such as Nafion can be used as proton exchange membranes in fuel cells.

“The first time I measured the proton conductivity of the jelly, I was really surprised,” said first author Erik Josberger, an electrical engineering doctoral student in Rolandi’s group at the UW. “I didn’t expect a natural material to approach the proton conductivity of an engineered material like Nafion.”

The new findings may be of interest to researchers in materials science and other fields. Applications of the discovery could include unconventional sensor technology, Rolandi said.

Co-authors of the paper include Pegah Hassanzadeh, and Yingxin Deng, who recently received graduate degrees from the UW Department of Materials Science & Engineering; Joel Sohn at UC Santa Cruz; and Michael Rego and Chris Amemiya of the Benaroya Research Institute.

This research was funded by the National Science Foundation, the Office of Naval Research and the National Institutes of Health.

For more information, contact Rolandi at mrolandi@ucsc.edu.

This was adapted from a University of California, Santa Cruz news release.