Search | Directories | Reference Tools
UW Home > Discover UW > Student Guide 
 | Glossary UW Bothell Course Descriptions UW Tacoma Course Descriptions
Search course descriptions with Google Custom Search:


Detailed course offerings (Time Schedule) are available for

CESG 501 Structural Mechanics (6) Mackenzie, Miller
Equations of a continuum for small displacements, applications to linear elasticity. Kirchoff plate theory, problems in advanced strength of materials. Virtual work, minimum potential energy, force and displacement methods of structural analysis. Direct stiffness method. Approximate solutions, geometric stiffness matrix. Linearized buckling. Offered: A.
View course details in MyPlan: CESG 501

CESG 502 Structural Dynamics (4) P. Calvi
Lagrange's equations. Free vibrations of linear, single, and multiple degree of freedom systems. Damping. Mode superposition. Forced vibrations by time history and by response spectrum methods. Free and forced vibrations of continuous systems. Wave propagation in rods and beams. Non-linear response of single and multiple degree of freedom systems. Non-linear response of continuous systems. Prerequisite: CESG 501 or permission of instructor. Offered: W.
View course details in MyPlan: CESG 502

CESG 503 Advanced Structures I (3) L. Lowes, M. Motley
Introduction to the finite element method for modeling civil structures at the graduate level. Formulation of line and continuum elements using virtual work and the principal of minimum potential energy. MATLAB programming of the finite element method. Use of commercial software to model real structures. Prerequisite: CEE 456 or CEE 501 Offered: W.
View course details in MyPlan: CESG 503

CESG 504 Finite Element Methods in Structural Mechanics (3)
Extension of the matrix methods of structural analysis to the solution of elasticity, plate, and shell problems by use of finite element approximations. Discussion of convergence and bounding and extension to investigation of stability and finite deformations. Prerequisite: CEE 501 or permission of instructor. Instructors: Mackenzie, Lowes, Miller Offered: W.
View course details in MyPlan: CESG 504

CESG 505 Engineering Computing (3) Lowes, Mackenzie, Miller
Applied computing in civil and environmental engineering contexts, including physical systems modeling, graphics and visualization, and data management. Program development using contemporary tools and strategies. Computer architecture fundamentals, theoretical and practical issues affecting memory use and performance. Offered: A.
View course details in MyPlan: CESG 505

CESG 506 Nonlinear Analysis of Structural Systems (3)
Formulation, solution, and interpretation of nonlinear numerical models of structural systems. Material and geometric nonlinearities for truss, beam, and frame systems. Resultant-based material laws. Large deformations. Solutions procedures, arc-length methods. Introduction to parameter identification. Prerequisite: CEE 501. Instructors: Lowes, Miller, Mackenzie Offered: Sp.
View course details in MyPlan: CESG 506

CESG 507 Structural Stability (3) M. Motley, R. Wiebe
Covers concepts and fundamental principles of mechanics of equilibrium states and their stability properties; analysis of the stability and critical loads of columns; beams, and frames with various boundary conditions and loads; application of design formulas; and approximate method to calculate elastic and inelastic buckling loads. Prerequisite: CEE 501. Offered: W.
View course details in MyPlan: CESG 507

CESG 508 Materials Modeling (3)
Behavior of materials used in civil engineering structures. Yield and failure surfaces. Physical and phenomenological models of plastic and viscoelastic behavior. Fracture mechanics. Fatigue models and predictions. Damping and friction. Behavior of anisotropic and composite materials. Offered: S.
View course details in MyPlan: CESG 508

CESG 509 Reliability and Design (3) Reed
Introduction to theory of structural reliability and its application to design procedures in civil engineering, including probability theory; assessment of uncertainties; code specification and the related concept of risk and the influence of socioeconomic factors; loads, load combinations, and probabilities of damage. Offered: AS.
View course details in MyPlan: CESG 509

CESG 521 Advanced Reinforced Concrete (3)
Behavior and design of reinforced concrete members and structures. Members subject to torsion and torsion combined with flexure and shear; members with small shear span/depth ratios, slabs. Prerequisite: CEE 452 or equivalent. Instructors: Eberhard, Stanton Offered: A.
View course details in MyPlan: CESG 521

CESG 522 Analysis and Design of Prestressed Concrete (3) J. Stanton
Provides an introduction to prestressed concrete. It will focus primarily on flexural members, but will also include axially loaded members. First, the concept of prestressing will be discussed, followed by analysis and design under service loads, then analysis for strength. The discussion will be restricted to statically determinate members.. A design project may also be included as part of the course. Prerequisite: CEE 452 or equivalent senior course on Reinforced Concrete; recommended: A course in statics and one in mechanics of materials. Offered: W.
View course details in MyPlan: CESG 522

CESG 523 Advanced Structural Systems (3)
Examines structural design of floor systems for buildings, including one-way and two-way slabs, strip method, yield line theory, prestressed concrete slabs. Lateral load resisting systems for buildings. Prerequisite: CEE 453; CEE 502. Instructors: Eberhard, Stanton Offered: Sp.
View course details in MyPlan: CESG 523

CESG 524 Advanced Steel I (3)
Factors influencing strength and serviceability of steel structures; LRFD limit state design procedures. Use of theories of plasticity and stability in development of design methods and specifications, bolted and welded connections, temperature effects, and affect of different fabrication methods on behavior of structure. Prerequisite: CEE 501. Instructors: Berman, Roeder Offered: W.
View course details in MyPlan: CESG 524

CESG 526 Earthquake Engineering I (3)
Earthquake mechanism and ground shaking, response spectra, linear elastic methods for prediction of behavior, displacement prediction methods for inelastically behaving structures, modeling and solution schemes, earthquake design philosophy, capacity design. Reinforced concrete, steel, and base-isolated structures. Prerequisite: CEE 501, CEE 502. Instructors: Roeder Offered: Sp.
View course details in MyPlan: CESG 526

CESG 527 Earthquake Engineering II (3)
Performance-based design, development of fragility curves, characteristics and effects of ground-shaking records, design methods, passive and active control, dynamic inelastic time history analysis, design of parts, system detailing, soil-structure interaction, repair and retrofit of structures. Prerequisite: CEE 515. Instructors: Roeder Offered: A.
View course details in MyPlan: CESG 527

CESG 528 Wind Engineering Design (3) Reed
Wind effects on structures, including atmospheric boundary layer flow; bluff body aerodynamics; structural dynamics and aeroelasticity; development and use of the ASCE Standards; estimation of along-wind, across-wind, and torsional response of tall buildings; design strategies for avoiding wind-induced discomfort. Fundamentals of wind tunnel testing. Offered: A.
View course details in MyPlan: CESG 528

CESG 529 Bridge Engineering (3) M. Eberhard
Design of bridges. Includes the design of decks, joints, girders, columns and foundations to resist gravity loads and earthquakes. Prerequisite: CEE 452, CEE 453 (or equivalents) Offered: S.
View course details in MyPlan: CESG 529

CESG 561 Soil Dynamics (3)
Dynamics of discrete systems; dynamics of continuous systems, wave propagation; dynamic soil properties; linear, nonlinear, and equivalent linear ground response analysis; vibrations of footings; construction vibrations; vibration isolation.
View course details in MyPlan: CESG 561

CESG 562 Advanced Geotechnical Laboratory (4)
Soil and site investigation, classification and engineering properties of soils and rock as determined by standard and advanced test procedures and equipment. Evaluation of test data. Report writing. Prerequisite: CEE 367 or equivalent. Offered: A.
View course details in MyPlan: CESG 562

CESG 563 Advanced Foundation Engineering (4)
Design and analysis of shallow and deep foundation systems and earth retention structures. Seismic effects, pile interactions, and other related topics. Site investigation, quality control, and construction methods. Offered: W.
View course details in MyPlan: CESG 563

CESG 564 Computational Geomechanics (4) P. Arduino
Introduction to geotechnical modeling, applied finite elements and soil constitutive modeling. Basic introduction to finite elements as applied to geotechnical problems. Development, implementation and calibration of constitutive models for soils including Von Mises, Drucker Prager, Mohr-Coulomb and Cam-Clay. Offered: W.
View course details in MyPlan: CESG 564

CESG 566 Geotechnical Earthquake Engineering (3)
Plate tectonics and elastic rebound theory of earthquakes and faults; characterization of ground motions; seismicity; seismic risk analysis; effect of local soil conditions on ground response; development of design ground motions; liquefaction; dynamic lateral earth pressures; seismic slope stability. Prerequisite: CEE 525 or permission of instructor.
View course details in MyPlan: CESG 566

CESG 576 Advanced Soil Mechanics (4) S. KRAMER
Consolidation behavior of soils; computation of magnitude and rate of settlement; shear strength of coarse and fine-grained soils under different groundwater and loading conditions; time and rate effects on shear strength; analysis of slope stability. Offered: A.
View course details in MyPlan: CESG 576

CESG 599 Special Topics in Structural and Geotechnical Engineering (1-5, max. 20)
Special topics in structural and geotechnical engineering offered occasionally by permanent or visiting faculty members. Offered: AWSpS.
View course details in MyPlan: CESG 599