Disability, Accessibility, and Universal Design in the Engineering Curriculum

Gaming for the Greater Good: A Classroom Experience at the Intersection of Technology and Disability

By David Chesney, University of Michigan

In the electrical engineering and computer science department at the University of Michigan, I teach two courses that include accessibility topics. The first, Gaming for the Greater Good, an intro course focused on creating a game with accessibility features for a specific disability, is used as a recruitment tool for students interested in computer science. The second, a software engineering capstone class, focuses on children with disabilities in the community and how to create accessibility solutions using the latest and greatest technology.

In each class, we focus on specific accessibility issues, usually around one individual’s needs. We go through a set of steps to solve the problem: proposing and pitching a solution, describing the requirements and design, building the product, and testing and maintenance. One example of a project we have designed includes using facial movements to control a keyboard. A number of the projects developed in these courses have commercial potential. We are in the process of forming a non-profit organization to commercialize software products where 50% of the revenue will go toward purchasing assistive technology for children with disabilities.

In these sorts of courses, social context and individual focus matter. Working with an individual with a disability helps students to better understand the engineering problem that they are trying to solve. Not only do these classes result in products that people with disabilities can use, but students in the class bring an awareness of accessibility into their careers as engineers. For more information on Gaming for the Greater Good, visit our website or watch a video about working with a child named Grace.


User-Centered Design and Accessibility in MIT 6.811: Principles and Practice of Assistive Technology 

By William Li, Massachusetts Institute of Technology

At the Massachusetts Institute of Technology (MIT), we have a full semester, project-based course called Principles and Practice of Assistive Technology (PPAT). In the course, engineering students develop customized, assistive devices with people with disabilities in the Boston area. Students enroll in the class because of its project-based design, the survey learning opportunity, or a personal interest or experience with disability. In 2014, 35 students enrolled in the class and worked with 11 clients. 

PPAT Learning goals include

  • Demonstrating the principles of user-centered assistive technology design and engineering.
  • Learning how to work with a real client in a design/engineering team project.
  • Understanding the challenges and realities of people with disabilities and becoming equipped as an advocate.

Students work on their projects each week, which includes client meetings, iterative design and evaluation, and prototyping and fabrication. Two hours per week are dedicated to lectures where students learn about communicating with people with disabilities, user-centered design, clinical perspectives, and more. Another two hours per week are spent on lab activities, surveying campus facilities for accessibility, and creating short films.

Examples projects are

  • The Claw, a tool to help individuals grip objects better; 
  • Successible Maps, a tool that showed all the accessibility features on campus; and 
  • Your Friendly Reminder, an application that sends reminders out for the day. 

In Feburary 2015, we hosted our first hackathon, a large event centered around students creating assistive technology in one day. Eighty students and 17 clients participated.  The event was organized by undergraduates and many students who had taken PPAT participated.

To learn about student projects and the design process, visit the student-run design blog.


Strategies for Introducing Accessibility Topics into Engineering Courses 

By Richard Ladner, University of Washington

Having an entire class on accessibility in web design or engineering is great; however, it’s possible to incorporate accessibility topics into almost any engineering class. You could give part of a lecture, a full lecture, or an entire course on an accessibility topic. Teaching about accessibility or inviting in a guest speaker can help change engineering knowledge and perspective as a whole. 

There are interesting engineering problems that have to do with accessibility. These are good ways to include information about them as part of a lecture. For example, when discussing data compression, you could use an example about braille. Signal processing lectures could draw from acoustic modems used in TTY systems or directional hearing aids. Other courses lend themselves to having a whole lecture on accessibility topics. A human computer interaction course might include lectures on universal design or ability-based design. A computer vision course might include a lecture on tactile graphics. 

Beyond including accessibility in mainstream courses, consider offering an entire course in your department. This could be as part of a freshman design course, like ones that exist at the University of Michigan or the University of Portland or a capstone course, like at MIT, the University of Michigan, or at the University of Washington (UW). When talking about accessibility topics, any course can introduce profiles of successful scientists and engineers who happen to have a disability. 

If disability topics are included multiple times throughout the curriculum, students realize that these are important issues. It’s great to weave accessible design knowledge throughout a student’s education. Having a whole course, as well as individual lectures within courses, promotes the idea that these issues are common in engineering and computing.


Senior Design Projects to Aid Individuals with Disabilities: The University of Toledo Experience 

By Mohamed Hefzy, University of Toledo

For the past twenty years at the University of Toledo, we have been introducing students to assistive technology through senior design projects. There are over 35 million people in the United States who have disabilities, all of whom have different needs. A lot of the assistive technology needed is either unavailable, very expensive, or requires custom modification. Many people with disabilities cannot afford custom modifications. 

In 1988, the National Science Foundation began a program called Bioengineering and Research to Aid the Disabled (BRAD), which provides funding for engineering students to construct custom designed devices and software for individuals with disabilities. These projects provide unique opportunities for students, improve the quality of life for people with disabilities, and allow universities to provide a service to their communities. 

Since 1994, at the University of Toledo over 600 students have participated in over 150 projects. Through the class, approximately 100 students per year participate in self-directed, semester-long group projects for both commercial and private clients. We start identifying project ideas before the semester begins through our partnerships with community organizations. Students rank the projects that they are interested in and are assigned to groups. Within groups, each student is assigned a role and submits weekly progress reports throughout the semester. During the eighth week of the semester students present their preliminary designs, and by the tenth week they begin constructing and testing a prototype. 

The teams showcase their projects at the Undergraduate Research and Senior Design Engineering Project Exposition. In a recent project, students designed a temporary prosthetic for a nun who had lost all of her limbs following an infection. Their design placed first in the 2014 Rehabilitation Engineering and Assistive Technology Society of North America (RESNA) Student Design Competition. 

We see multiple benefits from this course, including

  • Students gain new experiences and perspectives,
  • Clients have improved quality of life, and
  • The university gains connections to our community.

Using Design Projects to Serve Veterans with Disabilities 

By Samee Khan, North Dakota State University

In our courses at North Dakota State University, engineering students develop customized assistive technologies for veterans with disabilities. Student projects must be cost-effective, have a long lifespan, be robust, and be technologically superior to existing options.

Students enroll in a three semester sequence of courses. The first semester focuses on the ideology of building accessible designs. The second semester we focus on the project itself, including design stages, creating a plan for the client, and ordering parts. The third semester focuses on further development, prototyping, feasibility, testing with the client, and long term plans.

Often after the course is finished, students continue to work on the technology that they have developed. There have been seven patents awarded to technology developed through these projects, and two start-up companies have formed, Myriad Devices and Packet Digital. Project examples include a device that turns sign language into text, a voice-controlled door opener, and a voice-activated vending machine. Find more information about the courses and student projects online.


Universal Design in a Web Design and Development Course Curriculum 

By Terrill Thompson, University of Washington

When creating digital content such as web pages or online documents, we may envision our typical user as an able-bodied person using a desktop computer. In reality, users utilize a wide variety of technologies to access the web including assistive technologies and mobile, and everyone has different levels of ability when it comes to seeing, hearing, or using a mouse or keyboard. 

Diversity among web users provides technology teachers with a great opportunity. When learning to code, students should actively consider their users, including user differences. In partnership with K-12 teachers in the Bellingham, WA school district, DO-IT developed a web design curriculum. It is platform and vendor-neutral, so that it teaches concepts rather than how to use a specific tool. Standards-based, accessible design is taught early as a core design principle, and reinforced throughout the course. 

For assignments students must use valid code and conform to accessibility standards. For example, when learning how to add an image, students are taught to use alt tags. Likewise, they are taught to add caption files to videos. The curriculum is constantly being upgraded, is freely available, and has been used across the US and the world.

To access the web design and course curriculum for your own use, visit DO-IT's website. For more information about web accessibility, check out these resources: