
Computer Science Principles for Teachers of Blind and Visually
Impaired Students

Andreas Stefk
University of Nevada, Las Vegas

Las Vegas, NV
stefka@gmail.com

William Allee
University of Nevada, Las Vegas

Las Vegas, NV
wallee777@hotmail.com

ABSTRACT
The College Board’s AP Computer Science Principles (CSP) content
has become a major new course for introducing K-12 students to
the discipline. The course was designed for many reasons, but one
major goal was to broaden participation. While signifcant work
has been completed toward equity by many research groups, we
know of no systematic analysis of CSP content created by major
vendors in relation to accessibility for students with disabilities,
especially those who are blind or visually impaired. In this expe-
rience report, we discuss two major actions by our team to make
CSP more accessible. First, with the help of accessibility experts
and teachers, we modifed the entire Code.org CSP course to make
it accessible. Second, we conducted a one-week professional devel-
opment workshop in the summer of 2018 for teachers of blind or
visually impaired students in order to help them prepare to teach
CSP or support those who do. We report here on lessons learned
that are useful to teachers who have blind or visually impaired
students in their classes, to AP CSP curriculum providers, and to
the College Board.

CCS CONCEPTS
• Human-centered computing → Accessibility systems and
tools; • Social and professional topics → K-12 education;

KEYWORDS
Blind and Visually Impaired, Accessibility, Computer Science Prin-
ciples, Professional Development, The College Board, Code.org

ACM Reference Format:
Andreas Stefk, Richard E. Ladner, William Allee, and Sean Mealin. 2019.
Computer Science Principles for Teachers of Blind and Visually Impaired
Students. In Proceedings of the 50th ACM Technical Symposium on Computer
Science Education (SIGCSE ’19), February 27-March 2, 2019, Minneapolis, MN,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5890-3/19/02. . . $15.00
https://doi.org/10.1145/3287324.3287453

Richard E. Ladner
University of Washington

Seattle, WA
ladner@cs.washington.edu

Sean Mealin
North Carolina State University

Raleigh, NC
spmealin@ncsu.edu

USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3287324.
3287453

1 INTRODUCTION
After years of curriculum development and piloting, the College
Board has created a new AP course for high school aged students
to learn computer science and potentially earn college placement
or credit. Unlike AP Computer Science A, a course exclusively in
Java with a traditional CS1 design, Computer Science Principles
(CSP) was designed from the ground up to teach big ideas and com-
putational practices while also being engaging to a wide spectrum
of students.

One of the claimed benefts of the CSP course is its appeal to
equity, meaning it should be inclusive toward all students. In this re-
gard, data released by the College Board reports that approximately
76,000 students took the AP CSP Exam in 2018 [11]. Of these, they
categorize 5,082 (6.7%) as Black/African American, 14,020 (18.5%)
as Latino/Hispanic, and 22,721 (29.9%) as Female. Change can be
slow, but current data appears to be in a positive direction.

While CSP is making solid progress toward equity in regard to
women and minorities, we know of no systematic work evaluating
its impact on students with disabilities. After researching what the
College Board makes public and asking them, they do not keep
reliable data on participation by students with disabilities. This
experience report focuses on the impact of the CSP curriculum on
blind or visually impaired students.

To begin thinking about this group, we gathered 11 teachers
of diverse backgrounds for a one-week professional development
workshop for the purpose of familiarizing them with the CSP frame-
work [10], the Code.org CSP curriculum and pedagogy [12], and
the modifcations made to a Code.org curriculum that we created
in collaboration with accessibility experts and teachers of blind
and visually impaired students. Participants in the workshop pre-
pared lessons and taught them as a way of honing their teaching
pedagogy and critiquing the original and modifed Code.org CSP
curriculum. We recruited from teachers who teach and/or support
blind and visually impaired students exclusively and general edu-
cation teachers that have no direct training with blind or visually
impaired students, but that nevertheless have such students in their
classrooms. We did this to ensure we were listening to perspectives
of teachers that have expertise in blindness and those in general
education classrooms, as we suspected they might be diferent.

Paper Session: Accessibility SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

766

https://doi.org/10.1145/3287324.3287453
https://doi.org/10.1145/3287324.3287453
https://doi.org/10.1145/3287324.3287453
http:Code.org
http:Code.org
http:Code.org
mailto:spmealin@ncsu.edu
mailto:ladner@cs.washington.edu
mailto:permissions@acm.org
http:Code.org
http:Code.org
mailto:wallee777@hotmail.com
mailto:stefika@gmail.com

The rest of this paper is as follows. First, we discuss related work
and then the teachers themselves. Second, we discuss Code.org’s
CSP curriculum, including their embedded online tools, and our
modifcations to make it more accessible. Third we describe the
workshop and some of its highlights. Finally, we outline the overall
lessons learned related to accessibility of the AP CSP course.

2 RELATED WORK
To our knowledge, our workshop is the frst to bring in teachers
from a variety of backgrounds to specifcally focus on education
strategies and curriculum development for blind and visually im-
paired students in CSP. Although working with the teachers directly
seems to be relatively rare, many workshops and camps have been
held for these students to increase both interest and profciency for
Computer Science and other STEM disciplines.

The data for studies focusing on teachers of blind and visually
impaired students is typically obtained through interviews and
observation. To understand the strategies that teachers use in main-
stream classes, Lartec et al. interviewed 20 teachers with blind
students [18], which uncovered several themes, such as verbalizing
visual information, providing the student with additional time to
understand the information, and allowing peer assistance. When
interviewing instructors teaching at a STEM-focused camp for blind
students [34], Villanueva et al. found that teachers needed to be
aware of three main themes listed in most-to-least importance:
availability of accessible resources, understanding the needs of the
teacher and student, and general STEM knowledge.

Looking at Computer Science education, several studies intro-
duced tools to increase the efcacy of students navigating code [7]
and presented the results of a survey and interviews which found
blind students encountered many more problems than their sighted
counterparts. For example, students reported struggling with direc-
tions that relied on visual information (e.g., click on the blue button
on the right) and had many accessibility problems with develop-
ment environments. As a solution to this latter problem, Stefk et al.
developed a programming environment designed for accessibility
from the ground up, which is commonly used at residential schools
for the blind [30].

As a way to provide exposure to accessible concepts and build
interest, many camps have been held which focused on concepts
such as data analysis and accessible visualization [17], creating in-
teractive chatbots [9], robotics [19], and general programming [30].
Other camps have been held for general STEM disciplines, such as
astronomy [8] and chemistry [37].

3 WORKSHOP STAFF AND TEACHERS
The workshop staf consisted of the four authors of this report. The
author Ladner participated in a Code.org professional development
workshop in the summer of 2018 several week prior to the workshop.
The authors Stefk and Allee are developers of the accessible tools
used in the modifed curriculum, and Mealin is a very experienced
blind computer scientist.

As mentioned earlier, over the course of a 1-week workshop we
interacted with 11 teachers from varying backgrounds. Three were
teachers at residential schools for the blind, three were itinerant
teachers of the visually impaired (TVIs) working as consultants

or for school districts, three were teachers at mainstream public
schools that have blind or visually impaired students in their class,
one, who was himself blind, taught at the college level, and one
was an assistive technology specialist at a school for the blind. All
had experience working with blind students either individually, in
a classroom setting with only blind and visually impaired students,
or in a general education classroom setting with some blind stu-
dents. All but four of the teachers had experience teaching academic
computer science or coding as a career and technical education
(CTE) teacher. Two had experience teaching CSP to at least one
blind student, trying to adapt Code.org’s curriculum on their own.
Table 1 shows the background of each teacher that participated.

We recruited this diverse group, working with blind students in
diferent ways and with diferent levels of computer science knowl-
edge, intentionally to learn a diversity of perspectives. As a result,
we gathered varied feedback from those that were experts in blind-
ness, but knew less about adapting computer science principles, to
the opposite, with general education teachers that were intimately
familiar with CSP, but did not necessarily know how to modify
curriculum to blind or visually impaired students. This diversity
helped us gather varied feedback on 1) the Code.org curriculum 2)
The College Board’s procedures in regard to blindness, and 3) our
modifcations for making it accessible.

4 THE CODE.ORG CSP CURRICULUM
The Code.org CSP curriculum is very much a discovery and inquiry
curriculum, whereby in each lesson students are presented with a
computing problem to solve. This is done either as an "unplugged"
activity, using handouts or other ofine materials, or as a "plugged"
activity, using the online tools provided by Code.org. The activities
are typically completed in pairs or small groups. The discovery
activities are guided by the teacher, but students are not told how
to solve the problem. The teaching philosophy for student activities
is sometimes called Think-Pair-Share. This means students frst
work individually or in small groups thinking about a solution
to a problem, perhaps using trial and error or logical thinking,
while sometimes taking notes in a journal. Second, in pairs or small
groups, students compare and combine solutions. Finally, students
share ideas with the entire class. In this stage there is no correct
answer. The goal is for students to share possible solutions.

The discovery and inquiry approach leads to the concepts that
the students should be learning, but not necessarily to the technical
language that is found in textbooks or on the AP CSP exam. The
structure of a lesson follows the pattern "Activity - Concept - Vo-
cabulary." The purpose of the activity is to ground a concept in a
concrete way, then move to the technical vocabulary used more
generally in the computer science feld after. In this way, students
gain a deeper understanding of the meaning of the vocabulary
rather than being potentially intimidated by it at the beginning.

There are a total of 79 lessons found in 8 units in the Code.org
CSP curriculum. The online curriculum covers the 7 big ideas and
6 computational thinking practices found in the College Board AP
CSP framework [10]. Briefy, these big ideas are Creativity, Abstrac-
tion, Data and Information, Algorithms, Programming, the Internet,
and Global Impact. Those and the computational practices embody
how the College Board sees the content of a high school computer

Paper Session: Accessibility SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

767

http:Code.org
http:Code.org
http:Code.org
http:CODE.ORG
http:Code.org
http:Code.org

Table 1: Background of Teachers

Job Description School Setting CS Teaching

CTE Teacher School for the Blind Coding
Computer Science Teacher Public School AP CSP and AP CS A

Math/CS Teacher School for the Blind CS
CTE Teacher School for the Blind Coding
Itinerant TVI School District None
Itinerant TVI School District None

Assistive Technology Specialist School for the Blind None
Consultant TVI Independent None

CS Teacher College Level CS
CS Teacher Public School CSP
CS Teacher Public School CS

science course. The 8 units in the Code.org CSP curriculum for
2018-2019 are titled:

• Unit 1 - The Internet
• Unit 2 - Digital Information
• Unit 3 - Intro to Programming
• Unit 4 - Big Data and Privacy
• AP Explore Performance Task Prep
• Unit 5 - Building Apps
• AP Create Performance Task Prep
• Post AP (done after taking the AP exam in early May)

The curriculum makes extensive use of online tools. They in-
clude fve versions of an Internet Simulator used in Unit 1, a text
compression widget and two pixelation widgets used in Unit 2, the
App Lab programming environment used in Units 3 and 5, and the
encryption widget used in Unit 4.

5 ACCESSIBILITY OF THE CURRICULUM
In order for an online curriculum to be accessible to blind and visu-
ally impaired students, it must be compatible with modern screen
readers such as JAWS [25] and NVDA [1] on PCs and VoiceOver [6]
on Mac. It must also be compatible with the magnifcation tools
built into PCs and Macs and add-on tools such as ZoomText [27].
For an online curriculum like Code.org’s, this is accomplished by
adhering to the WCAG 2.1 AA guidelines [36], and by utilizing
the ARIA standard [35] for interactive web pages. This is not a
straightforward process, requiring a fairly high level of accessible
web development expertise. In addition to technical accessibility,
there can also be usability issues even when these guidelines are
followed. For example, a web page might be WCAG compliant, but
still difcult to use through a screen reader.

Generally speaking, Code.org’s curriculum is not accessible to
students who are blind and use screen readers. With their permis-
sion, we frst analyzed all of the lessons and content and tracked
what was and was not accessible. We provide here an overview of
our fndings.

To begin with, the online website for the course is often not
compliant with WCAG 2.1, which means that people with disabili-
ties may not be able to use it. Examples of this might be as simple
as missing alternate descriptions for an image, to more complex
minutia related to WCAG that are not crucial to describe in this

report. Second, for the lessons themselves, many of the unplugged
activities use visual metaphors and artifacts. To be clear, blind and
visually impaired people can certainly interpret visual metaphors
if the content is accessible, but that does not mean it is easy.

Because this requires some explanation, consider that some of
these visual concepts in the curriculum could be made to have
physical metaphors as an alternative. For example, Unit 1 Lesson
5 of Code.org’s curriculum provides students with a "Flippy Do"
template [13], which is used to teach binary numbers. Students are
asked to cut and fold a piece of paper along printed lines and fll
in blank spaces. Modifying this lesson could involve a variety of
possible changes. One could remove the Flippy Do, modify a digital
version for use with a screen reader, or create a Flippy Do template
using Braille. In our modifcation, we decided to be pragmatic. We
wrote changes to the text to make the Flippy Do less necessary, but
also provided a Braille Flippy Do as an alternative.

So far as we could tell, all of the visual, and incredibly creative,
online interactive tools in the Code.org curriculum are not screen
reader accessible. In particular, the App Lab programming tool is
not accessible even though there was a way to move from a blocks-
based code to and from text-based JavaScript code, that could, in
principle, be accessible. However, accessing that text through App
Lab prevents that text from being sent to the screen reader. To put
the problem plainly, a blind user using App Lab JavaScript mode
through a screen reader would hear no sound, regardless of the fact
that it is just text.

By blocks-based environment, we mean a programming setting
where visualization and direct manipulation are used to write pro-
grams, as opposed to writing text. While the reader might assume
that a highly visual blocks-based programming environment might
be inaccessible to the blind or visually impaired, and this assumption
is correct, there has been some progress on making blocks-based
environments accessible. For example, Milne and Ladner [20] cre-
ated an accessible blocks-based environment for younger children.
This is possible to do, so long as appropriate accessibility standards
are followed on a per platform basis.

While we point out that current blocks-based environments are
not accessible, we do think it is important to mention evidence from
Weintrop [38, 39], which shows that they do have some benefts
to learners. Efect sizes in such studies are relatively small, with

Paper Session: Accessibility SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

768

http:Code.org
http:Code.org

some showing no efect and others showing a small one. Our in-
terpretation of that work is that, depending on how blocks-based
programming environments are used, they overall have a limited,
but real, positive impact on learning at the high-school age. How-
ever, they also exclude both our population entirely and some others
with disabilities not discussed in this report (e.g., those with certain
physical disabilities).

6 MAKING THE CURRICULUM ACCESSIBLE
The goal of our modifed version of the Code.org CSP curriculum
was to adopt the "discovery and inquiry" pedagogy and overall
educational philosophy of the curriculum but convert all the on-
line lessons to accessible formats using the WCAG 2.1 accessibility
guidelines and ARIA as our initial guide. This meant fnding alter-
native unplugged activities for the strongly visually oriented ones
and developing alternative interactive tools to provide pragmatic
solutions for our population.

The modifed curriculum was done prior to the workshop. For
nearly a year, we employed a team of three teachers of blind and vi-
sually impaired students to modify the curriculum across the board,
focusing especially on the lessons and their unplugged activities to
make accessible alternatives. At the same time, our development
team collaborated with outside experts and developed equivalent
accessible interactive tools as replacements for the inaccessible
ones in the Code.org CSP online curriculum. We wrote our own
accessible versions of many of them as replacements for the inac-
cessible tools. Our replacements work by creating similar tools in
the Quorum web-based programming environment that is already
WCAG 2.1 compliant. For each of these tools, the Quorum source
code is available to students or teachers who can make changes to
customize it or make it better in some way. The modifed curricu-
lum uses the Quorum programming language environment instead
of App Lab for the programming development lessons especially in
Units 3 and 5.

As one fnal point on Code.org’s curriculum and the complexities
surrounding it, we want to be very careful in stating that these past
two sections of our paper were not intended to be critical of any
CSP curriculum development group. In particular, Code.org actively
requested our team to evaluate their curriculum for accessibility
and has been overwhelmingly supportive of our explicit search for
what is and is not currently accessible. We imagine many other
curriculum providers are in a similar situation. We would point
out that because of this collaboration, and that of our teachers and
students, all of the materials and tools described in this section are
available for use at the time of this writing.

7 QUORUM PROGRAMMING LANGUAGE
The Quorum programming language is a "born accessible" pro-
gramming ecosystem, meaning it was accessible from its formation
and has accessibility as a frst-class design goal. By our own inter-
nal tracking, Quorum is used in approximately half of residential
schools for the blind and visually impaired in the United States.
The language is not solely for individuals with visual impairments,
but it is inclusive of that group. The Quorum language has a wide
number of applications, including LEGO robotics programming,
digital signal processing, 2D/3D graphical, physics simulations, 3D

positional audio or other programs—all of which we have made
accessible.

The Quorum programming language is also classed as an "evidence-
oriented" programming language [29], which means its core syntax
and semantics are derived from both technical specifcations and
human-factors data. For those unfamiliar with evidence-oriented
programming, a recent Dagstuhl was conducted on the topic [28].
Language constructs like "for", for looping, are intentionally not
included, and were replaced in favor of notation choices with more
obvious semantic identity, like "repeat." These choices are not arbi-
trary and were derived from measurements of human productivity,
not just the opinions of the designers. In addition to making the
language easier for programmers to understand, reducing syntactic
clutter in the language (such as removing unnecessary parenthesis
and end-of-line symbols) makes code easier to understand when
using accessibility technologies such as screen readers.

While the core of our curriculum is online and we support acces-
sibility in this sense through standard mechanisms, some teachers
prefer ofine tools because screen reading technologies on desk-
top are mature. For this reason, users can either program online
using our editors or they can use Sodbeans, an ofine plugin for
the NetBeans development environment that adds Quorum and
accessibility support. Our team is also creating a new environment,
called Quorum Studio, that bypasses the standard Java Accessibil-
ity bridge for a custom accessibility layer. We call our approach
"accessible graphics mapping."

Briefy, the way the accessible graphics mapping works, which is
available today and which Quorum Studio is being built upon, is to
have an accessibility intermediate layer that combines native call-
downs to accessibility systems on a per-platform basis. This might
sound trivial, but there is no common intermediary for accessibility
without it. Every platform, to our knowledge, is incompatible with
accessibility systems on every other. From there, a graphics pipeline,
like OpenGL or DirectX, "maps" to the intermediate layer.

On Microsoft platforms, for example, it is easy to create an appli-
cation that has "buttons" on a "form" that are accessible. However,
it is signifcantly more difcult to make graphical applications, like
those in games, accessible, even if they also have items that look
and act like buttons. On Windows, Quorum tackles this problem
by connecting to what Microsoft calls UI automation.

Thus for accessible graphics mapping, Quorum users frst create
standard events (e.g., button clicks, typed keys), which are auto-
matically sent to the intermediate layer and translated into native
accessibility events. After translation, the intermediate layer tells
the operating system that graphical components are "acting like"
various accessibility systems, allowing bi-directional control. This
creates an operating system specifc accessibility event stream.

At the native level, accessibility technologies like screen readers
pick up on this event stream, which makes a graphical component
appear to be a native accessible application. Thus, whether the user
created a button or a complex 2D or 3D shape, the user obtains
information in a similar way. The full technical details of this system
are too complex to describe in this short paper. Sufce to say that
while versions of the technology are available today in Quorum 6,
they are complex and will evolve over time.

Paper Session: Accessibility SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

769

http:Code.org
http:Code.org
http:Code.org

8 HIGHLIGHTS OF THE WORKSHOP
The workshop was modeled after the Code.org TeacherCon con-
ference that was held in June 2018 in Atlanta, GA. A major compo-
nent was the use of their Teacher-Learner-Observer (TLO) model
whereby the teachers were placed into pairs who prepared and
co-taught a lesson from the Code.org CSP curriculum. With 11
teachers, one teacher was paired with our blind staf member to
form six pairs. Each pair was assigned one Code.org CSP lesson to
prepare and teach where the resource for the lesson was a combi-
nation of a Code.org lesson plan and a modifed accessible lesson
plan. Each pair was asked to prepare a 40-minute accessible lesson
using whatever resources they wanted from the two lesson plans,
and in addition, teachers were asked to be creative in making the
lesson as accessible as possible. Because so many of our teachers
were experienced with blind and visually impaired students, many
new ideas to improve the modifed accessible lesson plans emerged.

While each pair taught a lesson, the remaining 9 participants
played the role of students. Among the 9 participants there were
always one or two who were blind. This forced teachers to take
into account that they have blind students in their class. The re-
maining staf members stayed in the room as observers, helping
participants remain in their roles. The observers’ took notes and
provided additional feedback when the lesson was completed.

At the end of each lesson, one of the observers and the pair of
teachers left the room to refect on their teaching in terms of what
choices they made and why they made them, with a particular
emphasis on making the lesson accessible. At the same time, the 9
"students" in the lesson refected on what they learned and what
might have been improved to make the learning experience better.
After about 5 to 10 minutes, everyone joined back together to share
their refections with each other. During this fnal refection period
many new ideas came out about how to make the lesson more
accessible and engaging for the students.

In addition to the TLO activities, there were other activities we
focused on generating ideas for improving the modifed curriculum,
to strengthen the teachers’ capacity to teach blind and visually
impaired students, and to prepare the students for the AP CSP
Exam. These activities included:

• Overview of the history of CSP and its framework.
• Overview of the Code.org CSP curriculum and its accessible
modifcation.

• Overview of the Explore Performance Task and discussion
of interesting topics that might interest blind and visually
impaired students.

• Overview of and practice with the Quorum programming
environment.

• Overview of and practice with two Quorum-based online
educational tools.

• Demonstration of SAS Graphics Accelerator [24] for accessi-
ble big data analysis.

• Overview of the Create Performance Task and discussion
of interesting non-visual programming tasks that blind and
visually impaired students might develop.

• Discussion led by our blind staf member on highlights of
his career in computer science including obstacles he has
encountered and how they were overcome.

• Discussion and critique of the AP CSP Exam led by teachers
who have taught CSP.

• Discussion of how to build a computer science community
among teachers of blind and visually impaired students.

• Discussion of proper ways to interact with students who are
blind or visually impaired, led by TVIs.

9 LESSONS LEARNED
Although the primary purpose of the workshop was professional
development for teachers of blind and visually impaired students,
there was much to learn from these teachers that apply to any
teachers who have blind or visually impaired students in their
classes, to AP CSP curriculum providers, and to the College Board.
In this section, we review some of these lessons learned.

9.1 Lessons for Teachers
It is important to recognize that students who are blind or visually
impaired generally have the capability of completing the AP CSP
course. Including a student who is blind or visually impaired who is
prepared intellectually and has facility with technologies like screen
readers or magnifcation tools need not be an excessive burden
provided the curriculum itself is accessible. Most of these students
in mainstream settings have Teachers of the Visually Impaired
(TVIs) who work with students to improve their access to academic
subjects. AP CSP teachers should work closely with the TVI to help
make their class as accessible as possible and to learn some of the
best ways to interact with these students. The TVI may or may
not know about accessible educational tools for computer science
that are available to their students. Here is a short list of accessible
educational tools that were discussed during the workshop:

• The Quorum Language for general programming [33]
• SAS Graphics Accelerator for data analysis [24]
• Instructional Material Centers as a resource to fnd accessible
materials for any course [16]

• Flying Blind (Top Tech Tidbits in Assistive Technology) [14]
• AccessCSforAll to fnd a hotline for individual support for
teachers [3]

Some advice that came from the workshop teachers is to be
fexible. If an activity needs to be modifed or replaced, just do it.
Share your modifcation or replacement with others to save them
time. If a tool can’t be used by one of your students, report this to
the curriculum provider so that they can improve it.

9.2 Lessons for AP CSP Providers
A major goal of AP CSP is broadening participation, which means
the inclusion of all students regardless of gender, race, ethnicity,
socioeconomic, or disability status. This goal cannot be achieved
without attention to the accessibility of the curricula.

A frst step would be to do an evaluation with regard to accessi-
bility. This evaluation should be done by a qualifed accessibility
professional to be as complete as possible. After the evaluation,
revisions of a curriculum should be prioritized using criteria based
on the impact on students and teachers. A revision could be as
simple as providing an alternative accessible unplugged activity.
For the Explore Performance Task, include examples that relate to
accessibility. These examples will invigorate all students, disabled

Paper Session: Accessibility SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

770

http:Code.org
http:Code.org
http:Code.org
http:Code.org
http:Code.org

or not, to think outside of the box. Examples mentioned by work-
shop participants included content like the Graphiti refreshable
tactile graphics display [5], Orcam MyReader [23], Smart cane [4],
Tap wearable keyboard [32], or Sunu Band [31].

For the Create Performance Task, it might be necessary to pro-
vide an alternative and accessible programming environment. Pro-
gramming environments that only produce visual animations can
be limiting for all students. Programming environments that con-
trol robots and/or audio are reasonable alternatives, but not all
platforms are equally accessible. The broader point is that curricu-
lum should not be exclusively in one sensory modality. Even if
one is perceived to be engaging, like visuals genuinely can be, con-
tent providers need to be creative and engage in varying sensory
modalities if they wish to be general purpose and for all students.

This is an issue of equity and the law, since students with disabil-
ities have the legal right to participate in K-12 education through
section 504 [21]. Some states have been more explicit. For example,
in Nevada, SB-200 [26] requires all computer science courses at the
K-12 level to be accessible. To our knowledge, this is the only state
to call out this requirement for computer science explicitly as of
today, although we would be unsurprised if other states followed
suit given the overall goal of equity that is often discussed as part
of computer science education.

9.3 Lessons for The College Board
The teachers in the workshop had three categories of advice for the
College Board, which were related to practice examples, accommo-
dations, and the AP CSP Exam. When coming to their conclusions,
teachers had full access, and many knew, the College Board’s ex-
isting accessibility and accommodations guidelines [2]. Generally,
there is a need for more clarity and acknowledgement that students
who are blind or visually impaired are included in their advice to
students in their documentation. In the sample tests and questions,
as it stands now, teachers found that they did not convincingly take
disability status into account. Many examples were purely visual,
with no alternatives, and it was unclear to them whether this might
defate a blind student’s exam score without just cause.

Teachers had a number of concerns with the practice examples
provided by the College Board. These centered largely around the
fact that much of the content provided was purely visual. In theory,
teachers recognized the College Board "might" accept non-visual
alternatives, but the guidelines were vague or led to other concerns.
Examples might include, would video with scrolling text or a spoken
podcast be acceptable formats for the Explore Task? We would
encourage the College Board to re-think such issues.

Teachers had many questions about accommodations, but they
boiled down to what kind of help a blind or visually impaired stu-
dent can receive while doing either of the Performance Tasks. For
example, if a pertinent phrase is listed in a student’s Individualized
Education Program (IEP), like that the teacher is able to describe
visuals to them, can they have similar accommodations in the ex-
plore/create task (e.g., a teacher verifying a camera is not pointed at
the ceiling, putting a visual box or circle around lines of code speci-
fed by the student)? There is no acknowledgements for exceptions
in the "musts, may, and may not" list for teachers involvement in
performance tasks. Considering that about 13% of K-12 students

in the United States have an IEP [15], more clarity in addressing
the needs of these students in taking AP CSP and other AP courses
should be addressed.

There was considerable concern by the teachers about the use
of Braille math on the exam. There are currently two competing
standards: Nemeth and Unifed English Braille (UEB). Depending
on which state the student is from, they learn one or the other, yet
the College Board uses only Nemeth for CSP. Teachers urged us to
make it clear that this matters a great deal. A student who knows
UEB, but not Nemeth, would have a truly extraordinary barrier
placed in front of them and their exam scores may not refect their
abilities. These dialects of Braille are quite diferent and knowing
one hardly means that a student is familiar with the other. Overall,
as the Braille Authority of North America points out, the situation
regarding Nemeth and UEB is complicated [22].

There is also concern about whether any practice exams are
available in appropriate Braille formats and how equity is achieved
as certain questions are omitted from the exam for blind test takers.
For example, if statistical procedures at the College Board do not
take into account the "ease" of a question when dropping questions
for reasons of disability, this could provide students a non-equitable
advantage or disadvantage. In either case, the statistical evidence
for the decisions made needs to be publicly available for scrutiny.

10 ROADMAP
As one fnal consideration in this work, we want to at least men-
tion what we think needs to change for computer science to be
accessible in K-12. First, the AP course aside, a great deal of the
tools used by students in K-12 are not accessible to blind or visually
impaired students. This includes all of the ones used commonly,
like Scratch, SNAP!, Alice, and many others. This needs to change.
All of Quorum’s accessible output systems are open source and the
ideas, or even code, can be adapted freely.

Part of the issue with accessibility is that it is a second class
citizen. We regularly hear about equity for women and underrepre-
sented minorities and we agree this is critical. However, if we are
to embrace equity and computer science for all, we have to really
mean it. The College Board, for example, should not endorse any
curriculum, for any discipline, that is not accessible. Accessibility
can be the default if we want it to be.

11 CONCLUSIONS
We held a one-week professional development workshop in the
summer of 2018, the goal of which was both to train teachers of
blind and visually impaired students and evaluate accessibility in
CSP. This included a modifcation of Code.org’s online curricu-
lum for this population, in addition to analysis of it by 11 teachers.
Overall, we found that while many lessons can be modifed, the
CSP community has signifcant challenges ahead. Notably, curricu-
lum today has systemic barriers including the lack of engaging
non-visual alternatives. Many tools are not compatible with web
standards such as WCAG 2.1 AA. We think making progress on
this will take dedicated efort, but with evidence in hand on the
barriers, we think teachers, content providers, and others now have
a roadmap for what challenges to consider frst.

Paper Session: Accessibility SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

771

ACKNOWLEDGMENTS
The work is supported by the National Science Foundation under
Grant numbers 1738259 and 1738252. We would like to especially
thank Baker Franke at code.org for his kind and helpful comments
throughout this project.

REFERENCES
[1] NV Access. [n. d.]. NV Access: Empowering Lives through Non-Visual Access to

Technology. Retrieved August 28, 2018 from https://www.nvaccess.org/
[2] AccessCollegeBoard 2018. AP SSD Guidelines. Retrieved October 30, 2018 from

https://apcentral.collegeboard.org/pdf/ap-ssd-guidelines-2017-18.pdf
[3] AccssCSforAll. [n. d.]. AccssCSforAll Website. Retrieved August 31, 2018 from

https://www.washington.edu/accesscomputing/accesscsforall
[4] Access CS For All. [n. d.]. AssisTech. Retrieved August 31, 2018 from http:

//assistech.iitd.ernet.in/smartcane.php
[5] Inc. American Printing House for the Blind. [n. d.]. Graphiti refreshable tactile

graphics display. Retrieved August 31, 2018 from https://www.aph.org/graphiti/
[6] Apple. [n. d.]. Accessibility. Retrieved August 28, 2018 from https://www.apple.

com/accessibility/mac/vision/
[7] Catherine M. Baker. 2017. Increasing Access to Computer Science for Blind

Students. SIGACCESS Access. Comput. 117 (Feb. 2017), 19–22. https://doi.org/10.
1145/3051519.3051523

[8] Bernhard Beck-Winchatz and Mark A. Riccobono. 2008. Advancing participation
of blind students in Science, Technology, Engineering, and Math. Advances in
Space Research 42, 11 (2008), 1855–1858.

[9] Jefrey P. Bigham, Maxwell B. Aller, Jeremy T. Brudvik, Jessica O. Leung, Lind-
say A. Yazzolino, and Richard E. Ladner. 2008. Inspiring Blind High School
Students to Pursue Computer Science with Instant Messaging Chatbots. SIGCSE
Bull. 40, 1 (March 2008), 449–453. https://doi.org/10.1145/1352322.1352287

[10] The College Board. [n. d.]. AP Computer Science Principles. Re-
trieved August 28, 2018 from https://apcentral.collegeboard.org/courses/
ap-computer-science-principles

[11] The College Board. [n. d.]. Number of Girls and Underrep-
resented Students Taking AP Computer Courses Spikes Again.
Retrieved August 31, 2018 from https://www.collegeboard.org/
membership/all-access/counseling-admissions-fnancial-aid-academic/
number-girls-and-underrepresented

[12] Code.org. [n. d.]. Computer Science Principles. Retrieved August 28, 2018 from
https://code.org/educate/csp

[13] Code.org. [n. d.]. Lesson 5: Binary Numbers. Retrieved August 28, 2018 from
https://curriculum.code.org/csp-18/unit1/5/

[14] LLC Flying Blind. [n. d.]. Flying Blind Empowerment Through Technology.
Retrieved August 31, 2018 from http://www.fying-blind.com/

[15] National Center for Education Statistics. [n. d.]. Fast Facts, Students with Dis-
abilities. Retrieved August 28, 2018 from https://nces.ed.gov/fastfacts/display.
asp?id=64

[16] American Federation for the Blind. [n. d.]. Instructional Resource
Centers for the Blind and Visually Impaired. Retrieved August 31,
2018 from http://www.afb.org/info/afb-national-education-program/
national-instructional-materials-accessibility-standard-nimas/
instructional-resource-centers/235

[17] Shaun K. Kane and Jefrey P. Bigham. 2014. Tracking @Stemxcomet: Teach-
ing Programming to Blind Students via 3D Printing, Crisis Management, and
Twitter. In Proceedings of the 45th ACM Technical Symposium on Computer
Science Education (SIGCSE ’14). ACM, New York, NY, USA, 247–252. https:
//doi.org/10.1145/2538862.2538975

[18] Jane K. Lartec and Felina P. Espique. 2012. Communication Strategies of Teachers
Educating Students Who Are Legally Blind in the General Education Setting.
Insight 5, 2 (2012), 70.

[19] Stephanie Ludi and Tom Reichlmayr. 2011. The Use of Robotics to Promote
Computing to Pre-College Students with Visual Impairments. Trans. Comput.
Educ. 11, 3, Article 20 (Oct. 2011), 20 pages. https://doi.org/10.1145/2037276.
2037284

[20] Lauren R. Milne and Richard E. Ladner. 2018. Blocks4All: Overcoming Ac-
cessibility Barriers to Blocks Programming for Children with Visual Impair-
ments. In Proceedings of the 2018 CHI Conference on Human Factors in Com-
puting Systems (CHI ’18). ACM, New York, NY, USA, Article 69, 10 pages.
https://doi.org/10.1145/3173574.3173643

[21] U.S. Department of Education. [n. d.]. Protecting Students With Disabilities,
Frequently Asked Questions About Section 504 and the Education of Children
with Disabilities. Retrieved August 28, 2018 from https://www2.ed.gov/about/
ofces/list/ocr/504faq.html

[22] Braille Authority of North America. [n. d.]. Unifed English Braille (UEB). Re-
trieved August 28, 2018 from http://brailleauthority.org/ueb.html#plans

[23] Orcam. [n. d.]. OrCam MyReader 2 Website. Retrieved August 31, 2018 from
https://www.orcam.com/en/myreader2/

[24] SAS. [n. d.]. SAS Graphics Accelerator for data analysis. Retrieved August 31,
2018 from http://support.sas.com/software/products/graphics-accelerator/index.
html

[25] Freedom Scientifc. [n. d.]. Freedom Scientifc’s JAWS home page. Retrieved
August 28, 2018 from https://www.freedomscientifc.com/Products/Blindness/
JAWS

[26] "Senators Woodhouse; Denis; Ford; Spearman; Cancela; Carlton; Frierson; Atkin-
son; Cannizzaro; Gansert; Manendo; Parks; Ratti; Segerblom; and Fumo". [n. d.].
Senate Bill No. 200. Retrieved August 28, 2018 from https://www.leg.state.nv.us/
App/NELIS/REL/79th2017/Bill/5073/Text

[27] Ai Squared. [n. d.]. Zoom Text. Retrieved August 28, 2018 from https://www.
zoomtext.com/

[28] Andreas Stefk, Bonita Sharif, Brad. A. Myers, and Stefan Hanenberg. 2018. Evi-
dence About Programmers for Programming Language Design (Dagstuhl Seminar
18061). Dagstuhl Reports 8, 2 (2018), 1–25. https://doi.org/10.4230/DagRep.8.2.1

[29] Andreas Stefk and Susanna Siebert. 2013. An Empirical Investigation into
Programming Language Syntax. Trans. Comput. Educ. 13, 4, Article 19 (Nov.
2013), 40 pages. https://doi.org/10.1145/2534973

[30] Andreas M. Stefk, Christopher Hundhausen, and Derrick Smith. 2011. On the
Design of an Educational Infrastructure for the Blind and Visually Impaired
in Computer Science. In Proceedings of the 42Nd ACM Technical Symposium on
Computer Science Education (SIGCSE ’11). ACM, New York, NY, USA, 571–576.
https://doi.org/10.1145/1953163.1953323

[31] Sunu. [n. d.]. The Sunu Band. Retrieved August 31, 2018 from https://www.
sunu.io/index.html

[32] Tap. [n. d.]. Tap Wearable Keyboard, Mouse and Controller. Retrieved August
31, 2018 from www.tapwithus.com

[33] Quorum Development Team. [n. d.]. The Quorum Language. Retrieved August
31, 2018 from https://quorumlanguage.com/

[34] Idalis Villanueva and Marialuisa Di Stefano. 2017. Narrative Inquiry on the
Teaching of STEM to Blind High School Students. Education Sciences 7, 4 (2017),
89.

[35] W3C. [n. d.]. Accessible Rich Internet Applications (WAI-ARIA) 1.1. Retrieved
August 28, 2018 from https://www.w3.org/TR/wai-aria-1.1/

[36] W3C. [n. d.]. Web Content Accessibility Guidelines (WCAG) 2.1. Retrieved
August 28, 2018 from https://www.w3.org/TR/WCAG21/

[37] Henry B. Wedler, Lee Boyes, Rebecca L. Davis, Dan Flynn, Annaliese Franz, Chris-
tian S. Hamann, Jason G. Harrison, Michael W. Lodewyk, Kristin A. Milinkevich,
Jared T. Shaw, Dean J. Tantillo, and Selina C. Wang. 2014. Nobody Can See Atoms:
Science Camps Highlighting Approaches for Making Chemistry Accessible to
Blind and Visually Impaired Students. Journal of Chemical Education 91, 2 (2014),
188–194.

[38] David Weintrop. 2015. Comparing Text-based, Blocks-based, and Hybrid
Blocks/Text Programming Tools. In Proceedings of the Eleventh Annual Inter-
national Conference on International Computing Education Research (ICER ’15).
ACM, New York, NY, USA, 283–284. https://doi.org/10.1145/2787622.2787752

[39] David Weintrop and Nathan Holbert. 2017. From Blocks to Text and Back:
Programming Patterns in a Dual-Modality Environment. In Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer Science Education (SIGCSE
’17). ACM, New York, NY, USA, 633–638. https://doi.org/10.1145/3017680.3017707

Paper Session: Accessibility SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

772

https://www.nvaccess.org/
https://apcentral.collegeboard.org/pdf/ap-ssd-guidelines-2017-18.pdf
https://www.washington.edu/accesscomputing/accesscsforall
http://assistech.iitd.ernet.in/smartcane.php
http://assistech.iitd.ernet.in/smartcane.php
https://www.aph.org/graphiti/
https://www.apple.com/accessibility/mac/vision/
https://www.apple.com/accessibility/mac/vision/
https://doi.org/10.1145/3051519.3051523
https://doi.org/10.1145/3051519.3051523
https://doi.org/10.1145/1352322.1352287
https://apcentral.collegeboard.org/courses/ap-computer-science-principles
https://apcentral.collegeboard.org/courses/ap-computer-science-principles
https://www.collegeboard.org/membership/all-access/counseling-admissions-financial-aid-academic/number-girls-and-underrepresented
https://www.collegeboard.org/membership/all-access/counseling-admissions-financial-aid-academic/number-girls-and-underrepresented
https://www.collegeboard.org/membership/all-access/counseling-admissions-financial-aid-academic/number-girls-and-underrepresented
https://code.org/educate/csp
https://curriculum.code.org/csp-18/unit1/5/
http://www.flying-blind.com/
https://nces.ed.gov/fastfacts/display.asp?id=64
https://nces.ed.gov/fastfacts/display.asp?id=64
http://www.afb.org/info/afb-national-education-program/national-instructional-materials-accessibility-standard-nimas/instructional-resource-centers/235
http://www.afb.org/info/afb-national-education-program/national-instructional-materials-accessibility-standard-nimas/instructional-resource-centers/235
http://www.afb.org/info/afb-national-education-program/national-instructional-materials-accessibility-standard-nimas/instructional-resource-centers/235
https://doi.org/10.1145/2538862.2538975
https://doi.org/10.1145/2538862.2538975
https://doi.org/10.1145/2037276.2037284
https://doi.org/10.1145/2037276.2037284
https://doi.org/10.1145/3173574.3173643
https://www2.ed.gov/about/offices/list/ocr/504faq.html
https://www2.ed.gov/about/offices/list/ocr/504faq.html
http://brailleauthority.org/ueb.html#plans
https://www.orcam.com/en/myreader2/
http://support.sas.com/software/products/graphics-accelerator/index.html
http://support.sas.com/software/products/graphics-accelerator/index.html
https://www.freedomscientific.com/Products/Blindness/JAWS
https://www.freedomscientific.com/Products/Blindness/JAWS
https://www.leg.state.nv.us/App/NELIS/REL/79th2017/Bill/5073/Text
https://www.leg.state.nv.us/App/NELIS/REL/79th2017/Bill/5073/Text
https://www.zoomtext.com/
https://www.zoomtext.com/
https://doi.org/10.4230/DagRep.8.2.1
https://doi.org/10.1145/2534973
https://doi.org/10.1145/1953163.1953323
https://www.sunu.io/index.html
https://www.sunu.io/index.html
www.tapwithus.com
https://quorumlanguage.com/
https://www.w3.org/TR/wai-aria-1.1/
https://www.w3.org/TR/WCAG21/
https://doi.org/10.1145/2787622.2787752
https://doi.org/10.1145/3017680.3017707
http:code.org

	Abstract
	1 Introduction
	2 Related Work
	3 Workshop Staff and Teachers
	4 The Code.org CSP Curriculum
	5 Accessibility of the Curriculum
	6 Making The Curriculum Accessible
	7 Quorum Programming Language
	8 Highlights of the Workshop
	9 Lessons Learned
	9.1 Lessons for Teachers
	9.2 Lessons for AP CSP Providers
	9.3 Lessons for The College Board

	10 Roadmap
	11 Conclusions
	Acknowledgments
	References

