AccessComputing
Leadership Institute

November 5 - 7, 2008

Richard Ladner, Sheryl Burgstahler
University of Washington
Institute Objectives

• share best practices & develop new ones that will increase the number and success of persons with disabilities in computing fields.
• share & learn about funding opportunities to bring these practices to the people who need them.
• help develop new leadership in broadening participation in computing for persons with disabilities.
Desired Impact

BPC disability-related projects will benefit society by

- Making computing opportunities available to more citizens &
- Enhancing computing fields with the expertise & perspectives of people with disabilities.
Thursday Agenda

8:00 am Buffet Breakfast & Networking
9:00 Welcome
9:45 Panel: Reports on Existing Projects
11:15 Break
11:30 Panel: Personal Experiences
12:30 pm Working Lunch
1:45 Putting Pieces Together: Designing a Project
2:45 Break
3:00 Work Group Meetings: Sharing Projects, Ideas
4:15 Debriefing & Discussion on New Ideas
4:45 Preview Tomorrow, Daily Feedback
5:00 Adjourn
Welcome

- Introductions & project ideas
- Housekeeping: restrooms, breaks, meals, q&a
- Accessibility of meeting considerations
- Materials in folders
UW Collaboration

Department of Computer Science & Engineering

DO-IT (Disabilities, Opportunities, Internetworking & Technology)
Goal

- To increase the participation & success of individuals with disabilities in computing careers
 Richard Ladner, PI
 Sheryl Burgstahler, Co-PI & Director
 Michael Richardson, Manager
 Rob Roth, DHH Specialist
 Terry Thompson, Technical Specialist
 Scott Bellman, Work-based Learning
 Lisa Stewart, Program Coordinator
Partners

Regional Alliances for Persons with Disabilities in STEM:
- University of Southern Maine
- New Mexico State University
- University of Washington

SIGACCESS
Objective 1

- to increase the number of students with disabilities successfully pursuing undergraduate & graduate degrees & careers in computing fields

- Activities: College transition & bridge programs; tutoring; high school, college, graduate internships; e-mentoring
Examples

• Summer Academy for Advancing Deaf & Hard of Hearing in Computing, UW
• Gallaudet Summer Transition Academy in Computing
• ImagineIT Workshop, RIT
• Summer Computing Institute, U. Southern Maine
• Introduction to computing & engineering fields event University of Minnesota, Duluth
• Accessible Technology Seminar, Florida State
• Internships in Alaska, Arizona, Florida, New York, Washington, Wisconsin
Objective 2

- to increase the capacity of postsecondary computing departments to fully include students with disabilities in computing courses & programs

- Activities: Communities of Practice (CoPs); Capacity-Building Institutes of stakeholders/gatekeepers; Computing Department Accessibility Checklist
Computing Department
Accessibility Checklist

• Universal Design
• Accommodations
Planning, Policies, & Evaluation

• Are people with disabilities, racial/ethnic minorities, & both men & women young & old students, & other groups included in departmental planning & review processes & advisory committees?

• Do you have a procedure to assure a timely response to requests for disability-related accommodations?
Facility & Environment

• Are all levels of departmental facilities connected via a wheelchair-accessible route of travel?
• Can at least one public telephone in the department be reached from a seated position?
Support Services

• Do staff members know how to respond to requests for disability-related accommodations such as sign language interpreters?
Information Resources

• Do pictures in departmental publications & on websites include people with diverse characteristics with respect to race, gender, age, & disability?

• In key publications, does the department include a statement about its commitment to universal access & procedures for requesting disability-related accommodations?

• Do departmental web pages adhere to accessibility guidelines or standards?
Computing
Courses & Faculty

• Do video presentations used in courses have captions? Audio descriptions?
• Do faculty members know how to respond to requests for disability-related accommodations?
• Are faculty members familiar with & do they employ instructional strategies that maximize the learning of all students?
• Is universal/accessible design incorporated into the curriculum of appropriate courses?
Objective 3

- to create a **nationwide resource** to help students with disabilities pursue computer fields & computing educators & employers, professional organizations, & other stakeholders develop more inclusive programs & share effective practices

- *Activity: AccessComputing* Knowledge Base (KB) of 250 FAQs, case studies, promising practices

KB Q&As

- How can I get started in making my distance learning course accessible to all students?
- How can I make my computing department more accessible to students with disabilities?
- How can people who are blind use computers?
KB Case Studies

• Distance Learning: A Case Study on the Accessibility of an Online Course

• Universally Designed Web Pages: A Case Study on Access Issues for a Student with a Learning Disability

• Web Access: A Case Study on Making Content Accessible to a Student who is Blind
KB Promising Practices

• Digital Frog International: A Promising Practice in Designing Accessible Educational Software
• The ImagineIT Workshop: A Promising Practice in Engaging Students with Visual Impairments
• Maplewood Middle School: A Promising Practice in Integrating Technology for Students with Visual Impairments
Panel: Reports on Existing Projects

Activities for Specific Disabilities
Promoting Access and Interest in Computing for Students with Hidden Disabilities

Steve Fadden, PhD
Landmark College Institute for Research and Training
stevefadden@landmark.edu
Students Mentoring Students

- Projects vary each semester, but include
 - Eye tracking
 - Usability studies
 - Developing Flash applications
 - Robotics and programming (Pico Crickets)

- Students master technologies and techniques
- Mentor college and younger students

Mega Man, known as Rockman (ロックマン, Rokkuman?) in Japan, is a video game developed and published by Cap Entertainment System game to ever star Megaman in several series and is called the Mega Man game established main would define several notably, Mega Man reaches number of stages, each end that, when defeat power to Mega Man.
Usability Evaluation and Design

• Work with students to identify problems with online learning resources

• Students develop and test new designs (current work includes developmental algebra)

• Redesigned resources are being implemented in developmental 2-year college courses to address barriers faced by students with disabilities
Student Panels and Workshops

- Students participate in capacity-building workshops for educators
- Inform participants about disabilities and student experiences
- Participants learn and practice techniques to promote access to computing and academic success in barrier courses
Data Collection Approach

- Formative feedback: Data include student ability assessments, knowledge gains, self-efficacy data, student interests, and faculty/staff beliefs about student abilities and outcomes.
- Summative feedback: Graduation and degree information through DegreeVerify as well as in-person contact (when possible). Currently focused on academic performance and course retention rates for barrier courses.

![Gain on 16-item knowledge inventory](image)
Anna Cavender
Summer Academy for Advancing Deaf and Hard of Hearing in Computing

University of Washington
Summer Academy for Advancing Deaf and Hard of Hearing in Computing

Goals:

• bridge the gap between a K-12 and a college environment

• realistic, college-level computer science courses within a supportive and fun environment

• encourage students to pursue computer science in college and prepare them with keys to success

• provide proper help and approachable tutors, but encourage independent learning and creative problem solving
Curriculum

• 9-week program
 – Introduction to Computer Programming
 • CS 1 and CS 0.5
 – Animation

• 18 students from all over USA
 – High school, college freshmen, college sophomore
 – Diversity of backgrounds
 – Recruited D/HH tutors
It’s not all about course work

- Guest speakers/mentors
 - Deaf and hard of hearing computer scientists
- Visits to computing companies
 - Adobe, Boeing, Gas Powered Games, Google, Intel, Microsoft, and Valve
- Fun activities
 - Baseball game, Ducks tour
- Community Premiere
Outcomes from CS 1 and CS 0.5

- 50% succeeded and could go on in computing
- 33% above average grades
- All 18 who completed our program also completed the CS courses
 - (typical dropout rates: CS 0.5 = 30%, CS 1 = 10%)
- All 3 students in CS 0.5 passed, 2/3 above average
Study Survey - CS

Average Response to Questions related to CS Courses

Way above average 5
Above average 4
About average 3
Below average 2
What’s that? 1

CS.5-803 | CS.5-806 | CS.5-808 | CS1-801 | CS1-804 | CS1-805 | CS1-807 | CS1-809 | CS1-810 | Overall

1-PRE | 2-POST

Legend:
Summer Academy for Advancing Deaf and Hard of Hearing in Computing

www.washington.edu/accesscomputing/dhh/academy/
2006 Summer Computing Program at Gallaudet

A Report Presented to AccessComputing
University of Washington
Fat Lam
Gallaudet University
November 2008
Goal and what we did

• Goal: Recruit 15 students.
• Sent out 2500 flyers to schools and programs serving deaf students.
• Email sent to 51 schools for the deaf.
Recruitment Result

• 12 students applied.
• We accepted 11 students.
• 7 students came (4 males and 3 females). They were from Arizona, California, Maryland, Massachusetts, New Jersey, and Washington.
• Chinese: 1, Black: 1, Hispanics: 2, White: 3.
The Program

• Mornings: Math related to computing
 - Cryptography, Python Programming, Floating Point Arithmetic, 3D graphics, Linear Functions and Vectors.
• Afternoons: Computing
 - Robot Construction, Calibration of IR range sensors.
Program (continued)

• Late Afternoons
 - Personal Discovery
• Evenings
 - Study Table or Games.
• Field Trip every Wednesday afternoon
 NSA
 NASA
 CIA
 NGA (National Geospatial-Intelligence Agency)
Interest in CS

• Students were surveyed on their attitudes towards the program.

 Decreased 0
 Somewhat decreased 0
 Same 29%
 Somewhat increased 29%
 Increased 43%
ImagineIT Workshop for Students with Visual Impairments

Stephanie Ludi
Dept. of Software Engineering
Rochester Institute of Technology
salvse@rit.edu

Funded as part of the Accessible Computing Education Project, by the National Science Foundation (Grant #0634319).
Motivation and Scope

• The need to increase participation in computing
• Students with visual impairments are underrepresented
• 14 students in Grades 7-12, in 4 teams
• Interest in computing, varied experience
• Visual acuity varied, including blind
Robotics Activity Overview

- 2 days with Lego Mindstorms NXT
- BricxCC environment, NXC language
 - Screen reader and magnifier accessible
 - Low learning curve
- Development of accessible materials and labels
- Navigate through the maze and locate a sound source. After exit, locate the sound source, play a sound and stop movement.
Feedback: Student Survey

<table>
<thead>
<tr>
<th>Scale</th>
<th>Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likelihood enroll in computer class in school</td>
<td>High, but self-selected participants</td>
</tr>
<tr>
<td></td>
<td>Several said no courses available</td>
</tr>
<tr>
<td>Experience in working in teams</td>
<td>1 - 4</td>
</tr>
<tr>
<td>Interest in robotics and programming</td>
<td>1 - 5</td>
</tr>
<tr>
<td>Challenge of the activities,</td>
<td>1 (Difficult) - 3 (Easy)</td>
</tr>
<tr>
<td></td>
<td>8 about right, 3 difficult, 2 easy</td>
</tr>
<tr>
<td>Extent of fun of the Mindstorms activity</td>
<td>Not Fun, Neutral, and Very fun</td>
</tr>
<tr>
<td></td>
<td>11 very fun</td>
</tr>
<tr>
<td>Increase in understanding opportunities</td>
<td>1 - 5</td>
</tr>
<tr>
<td></td>
<td>4 avg</td>
</tr>
</tbody>
</table>
Feedback: Parents

• This workshop allowed these teens many opportunities to let them see that a career in computers is very possible.
• The workshop gave the kids a lot of hands-on experience with computers that they might not have gotten otherwise. Plus they were able to share ideas and learn from other students.
• This will definitely make a significant impact on my son's (I'm sure many others participants as well) development and choices in life.
• Other feedback: smaller teams, noise control, more programming instruction
• Parents had opportunity to share experiences (school district support, additional programs)
Mary Jo Thorpe
Inspiring Blind High School Students to Pursue Computer Science with

Instant Messaging Chatbots

Jeffrey P. Bigham

Maxwell B. Aller, Jeremy T. Brudvik, Jessica O. Leung, Lindsay Yazzolino, and Richard Ladner

University of Washington
Computer Science & Engineering
NFB Youth Slam

- 200 blind high school students
- 60 blind mentors
- 4 days at Johns Hopkins University
- Exploring fields falsely believed too difficult
 - Especially STEM fields
IM Chatbots

- Created by a student
- Read by a screen reader
Responses triggered by simple regular expressions.

Chatbots work with remote web services – today’s weather, news and dictionary.

THE AVG DRIVER PAYS $69/mo for Auto Insurance. Get New Payment!
class HowAreYouBot : BasicBot {
 public override string HandleMessage (string message, string user, BotMemory bm) {
 if(bm ["asked"] == "yes") {
 bm ["asked"] = "no";
 return "That’s great!";
 } else {
 bm ["asked"] = "yes";
 return "How are you today?";
 }
 }
}

User: Hello
Bot: How are you today?
User: Great.
Bot: That’s great!
WebInSight

Code and curriculum at:
webinsight.cs.washington.edu/chatbots

Thanks to: National Federation of the Blind, National Science Foundation, Boeing, John Hopkins University, Sangyun Hahn, Marc Riccobono, Mary Jo Thorpe.
Activities for Multiple Disabilities
Samantha Langley
Daniela Marghitu
Incorporating Disability-Related Topics in Computing Curricula
Terry Thompson
ACCESSIT Web Design & Development Curriculum for High Schools

- Developed with funding from the U.S. Department of Education, National Institute on Disability and Rehabilitation Research (NIDRR)
- Maintained with funding from NSF on AccessComputing grant
- Developed in collaboration with high school web design instructors from Bellingham, WA Public Schools
- http://www.washington.edu/accessit/webdesign
Guiding Principles of Curriculum

• Emphasizes standards-based and accessible design

• Begins by building a foundation of design theory principles, and all web design techniques are taught with these principles in mind

• Is project-based

• Is cross-platform, and not linked to any specific software manufacturer

• Includes soft skill elements (i.e., organizational skills and the ability to communicate effectively with team members and clients)

• Provides students with an opportunity for "real world" experience designing and developing websites for local community organizations.
Curriculum Interest and Usage Data

• Data collected from instructor registrations (instructors must register with valid email addresses)
• 551 registered instructors
• 45 states (all but AL, HI, ND, SD, and WY)
• 26 countries
• To date, usage data is anecdotal: High schools, middle schools, community colleges
Sheryl Burgstahler

Universal Design of Webpages in Class Projects

www.washington.edu/doit/Brochures/Technology/universal_class.html
Richard Ladner
Teach computer science without a computer!

Computer Science Unplugged is a collection of activities designed to teach the fundamentals of computer science without requiring a computer. Because they're independent of any particular hardware or software, Unplugged activities can be used anywhere, and the ideas they contain will never go out of date. Unplugged activities have been trialled and refined over 15 years in classrooms and out-of-school programmes around the world.

And it's free!

You can download Unplugged activities as individual PDF files from their pages on this site, or download a teachers' version of the collection as a single file. But it's worth browsing this site. You'll find supplementary material for each activity: videos, links, photos, feedback, curiosities and more. We're also working on online games, competitions, links to curricula, and new material. Printed versions of the Unplugged material are available for purchase, and proceeds from sales are put back into the project.

Unplugged is based at the University of Canterbury in Christchurch, New Zealand.
Computer Scientists
Nicole Torcolini, Computer Science Student, Stanford

TV Raman

Christian Vogler
Computer Scientists

Chieko Asakawa
IBM Japan

Hideji Nagaoka
Tsukuba U. of Tech
Panel: Personal Experiences in Pursuing Computer Science/IT

Ted Hart
Jeanine Cook
Annie Anton
Shiri Azenkot
Working Lunch

With panelists & participants discuss what practices show promise for broadening participation in computing careers.
Putting the Pieces Together: Designing a Project
Relevant Data

Richard Ladner
Estimates of Disability

Percent with disabilities

<table>
<thead>
<tr>
<th>Category</th>
<th>Percent with disabilities</th>
<th>Number with disabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population 15-24</td>
<td>11%</td>
<td>4,128,000</td>
</tr>
<tr>
<td>Students 6-17</td>
<td>12%</td>
<td>5,708,900</td>
</tr>
<tr>
<td>STEM undergraduates</td>
<td>11%</td>
<td>580,000</td>
</tr>
<tr>
<td>STEM graduate students</td>
<td>7%</td>
<td>30,000</td>
</tr>
<tr>
<td>STEM doctorate recipients</td>
<td>1%</td>
<td>307</td>
</tr>
<tr>
<td>Population 25-64</td>
<td>16%</td>
<td>24,350,000</td>
</tr>
<tr>
<td>US workforce 21-64</td>
<td>10%</td>
<td>14,313,000</td>
</tr>
<tr>
<td>STEM workforce</td>
<td>5%</td>
<td>242,700</td>
</tr>
<tr>
<td>STEM doctoral faculty</td>
<td>8%</td>
<td>13,500</td>
</tr>
</tbody>
</table>

Undergraduate students with disabilities choose S&E majors at about the same rate as students without disabilities

Undergraduate students, by major & disability status: 2004

Natural sciences and engineering
- No disability: 18%
- With disability: 18%

Social/behavioral sciences
- No disability: 9%
- With disability: 9%

Humanities
- No disability: 14%
- With disability: 13%

Health
- No disability: 16%
- With disability: 16%

Education
- No disability: 9%
- With disability: 8%

Business
- No disability: 20%
- With disability: 19%

Other nonS&E
- No disability: 15%
- With disability: 17%

Students with disabilities are less likely than those without to complete a bachelor’s degree

Students who began at 4-year colleges or universities in 1995, by disability status & persistence in 2001

SOURCE: U.S. Dept. of Education, Natl Center for Education Statistics, Beginning Postsecondary Students Longitudinal Study
Graduate students with disabilities are less likely than those without to major in science & engineering

Graduate students, by majors & by disability status: 2004

- Natural sciences and engineering
 - No disability: 9%
 - With disability: 13%
- Social/behavioral sci
 - No disability: 6%
 - With disability: 9%
- Humanities
 - No disability: 8%
 - With disability: 7%
- Health
 - No disability: 15%
 - With disability: 11%
- Education
 - No disability: 26%
 - With disability: 33%
- Business
 - No disability: 18%
 - With disability: 14%
- Other nonS&E
 - No disability: 14%
 - With disability: 18%

SOURCE: U.S. Dept. of Educ., National Center for Education Statistics, National Postsecondary Student Aid Study
Some Basic Facts

• 11% of students age 14-21 have disabilities; learning disabilities are most prevalent.
• 11%/7% of undergraduate/graduate students have disabilities; learning disabilities are most prevalent.
• 13% of undergraduate IT majors have disabilities.
• 5% of graduate IT majors have disabilities.
• 0.8% of IT doctorates have disabilities (e.g., 1999-2004 there were 53 in the US.).
• 5% of employed IT scientists & engineers have disabilities.
• As people age, the percentage of those with disabilities in that age group grows.
Problem Areas

- Students with disabilities tend to drop out of computing majors more than other students.
- Very few students with disabilities go on for advanced degrees in computing.
- Transitions between educational levels & to careers are especially challenging for students with disabilities.
NSF Grant Opportunities

Jan Cuny

BPC Solicitation

Other NSF Opportunities
Mini Grants & Other Opportunities

Sheryl Burgstahler

- grants.gov website & “email subscription”: includes NSF + Dept of Ed, NIH, Dept. of Labor
- Foundations
- Corporations
- Individuals
Mini Grant Proposals

• Project Title, Date(s), Location, Director
• Project Objective(s) & Outcome(s): How will your project promote the interest, participation, &/or success of individuals with disabilities in computing careers?
• Project Description: How will your project accomplish its objectives?
Mini Grant Proposals

• **Project Budget:** For what expenses do you request funding from AccessComputing? (We are able to support the direct costs of the project such as travel expenses for a speaker, refreshments for participants, facility rental, & duplication & mailing of materials.)
Mini Grant Proposals

• Project Management, Support Staff, Timeline: Who will do what & when?

• Project Evaluation: How will you know you have accomplished project objectives (e.g., evaluation forms, observations, follow-up interviews after program participation)?
Work Group Meetings: Sharing Projects & New Ideas

Roles of proposal writers & “consultants”
Work Group
Debriefing: Sharing Projects & New Ideas
Dinner, Today’s Feedback

- Dinner Tonight
- Daily Feedback
- Agenda Tomorrow
Friday Agenda

8:00 am Working Buffet Breakfast, Networking, Discussion
9:00 Overview of Agenda
9:30 Grant Writing Tips
10:00 Planning & Implementation: Tips from the Field
11:00 Break
11:15 Working Group Meetings: Project Planning
12:30 pm Working Lunch
1:30 Final Topics for Discussion
2:30 Debriefing & Discussion on New Ideas
2:50 *AccessComputing* Leadership Institute Evaluation
3:00 Adjourn
Logistics

Lisa Stewart

Travel
Institute Evaluation
Institute PowerPoints
Q&A
Ways to Engage With Us:

Join Communities of Practice:

- dscop@u.washington.edu for disability services
- compcop@u.washington.edu for computing faculty, administrators, employers
- bpcop@u.washington.edu for broadening participation alliances & projects
- vetscop@u.washington.edu for promoting computing fields to veterans with disabilities
- dhhcop@u.washington.edu for deaf & hard of hearing individuals, service providers & advocates
Ways to Engage With Us:

- Apply/test *Computing Dept Accessibility Checklist*
- Let us help you make your project accessible to people with disabilities (recruitment, support, websites, etc.)
- Invite YOUR project participants to our e-mentoring, internships (including the AccessComputing Team)
- Contribute questions, practices to KB
NSF Grant Writing Tips

Jan Cuny
Lessons Learned

- Pay close attention to solicitation
- Engage stakeholders
- Link each activity with goal & objective
- Employ universal design, even if target audience has a specific type of disability
- Measure outputs, outcomes & impacts
- Address data collection challenges
Evaluation: Tips from the Field

Sheryl Burgstahler

Evaluation Methods

- Surveys, interviews, focus groups regarding specific activities
- Institutional data (degrees, majors, institutional changes)
- Participant longitudinal transitions through critical junctures
Conclusions

– For students,
 • Increase the overall pool of college graduates with disabilities to increase computing degrees
 • Provide motivational activities to recruit students without initial interests in computing
 • For students with computing interests, comprehensive interventions have more impact than isolated efforts

– Institutional change is needed, too
Project Planning, Implementation, & Evaluation: Tips from the Field

Panel: Richard Ladner
Samantha Langley
Stephanie Ludi
Working Group Meetings

Continue project planning, with a focus on evaluation
Working Lunch

Continue to discuss potential proposals
Debriefing of Working Group Meetings

Share project implementation & evaluation ideas.
Working Group Meetings

Final topics
Debriefing
Working Group Meetings

Share new ideas.
Reminder: Desired Impact

BPC disability-related projects will benefit society by

- Making computing opportunities available to more citizens &
- Enhancing computing fields with the expertise & perspectives of people with disabilities.
Evaluation

Complete the Institute final evaluation.