UW Undergraduate Research Program

<<< URP Home

Students in Research
See more URP photos!

URP Advising

Creative Commons License
The Undergraduate Research Program website, created by the Undergraduate Research Program at the University of Washington, is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Permissions beyond the scope of this license are available at exp.washington.edu/urp/about/rights.html

The Levinson Emerging Scholars Program

Eric Do - Bioengineering

Eric DoNow immersed in my fourth year as a senior in the Bioengineering department, with a capstone design project underway, I am able to reflect on my research experiences. Coming into college, I had never anticipated reaching the level of research involvement I have been able to obtain during my undergraduate years. In addition to my capstone work, I have been fortunate enough to have taken part in a diverse set of research experiences through summer programs at the Wake Forest Institute for Regenerative Medicine and the Johns Hopkins Institute for NanoBioTechnology (NSF REU). Nevertheless, I developed an interest in actively engaging in research with applications toward global health and medicine, which allowed me to find footing with the Woodrow Lab for my senior capstone project. Since junior year, I have been working to develop nanoparticles to achieve combination delivery of antiretroviral drugs with different mechanisms of action. My project aims to gain insight in identifying unique drug-drug interactions for HIV prevention. Altogether, I have come to appreciate not only my interdisciplinary research background but also its gradual impact in shaping me into the student I am today. I am extremely thankful for the generous support provided by the Levinson Emerging Scholars program as it will further motivate me to focus on my research and pursue my interest in medicine and biomedical research.

Mentor: Kim Woodrow, Bioengineering

Project Title: Developing nanoparticle-based antiretroviral topical microbicides for HIV prevention

Abstract: According to the UNAIDS 2010 Global Report, roughly 33.4 million people were living with HIV in 2008, with two thirds of them being in Sub-Saharan Africa. Females are disproportionately affected by the HIV epidemic and women-initiated prevention methods are lacking. To address this, we propose nanoparticle-based combination antiretroviral microbicides as an effective topical strategy for the prevention of HIV infection. Currently, most candidate-microbicides consist mostly of gels, which have demonstrated poor efficacy in clinical trials. Studies have supported the successful impact of highly active antiretroviral therapy (HAART) as a standard of care for HIV/AIDS affected individuals, which has motivated the investigation of the topical delivery of combination antiretroviral drugs. The proposed work has the potential to address the delivery challenges brought upon by the diverse classes of ARV drugs. The primary appeal for this approach lies in the combination delivery of drugs with different properties and mechanisms of actions to minimize chances of resistance and improve efficacy. In Phase 1, design of the nanoparticles as well as drug encapsulation and release kinetics will be assessed. In Phase 2, bioactivity and combination studies (Chou and Talalay method) will be performed to identify synergistic drug combinations and favorable drug-drug interactions. In Phase 3, tissue biodistribution and penetration of the nanoparticle microbicides will be performed. The research plan is designed to develop and evaluate nanoparticle microbicides as drug delivery systems for HIV prevention. Successful outcomes of this endeavor could have profound implications on microbicide research and a potentially viable female-controlled prevention method for HIV.