Treatment of Common Pediatric Infections

Medical Student Case Discussion
Why are we talking about this?

Antibiotic use is common:
Estimated >30 million prescriptions to children annually\(^1\)

32 million pediatric outpatient visits for respiratory conditions result in antimicrobial prescriptions annually, accounting for >70% of visits resulting in antimicrobial prescriptions.\(^2\)

\(^1\) --McCaig, *JAMA* 2002; *Emerg Infect Dis* 2003
\(^2\) --Hersh, *Pediatrics* 2011
So...is this a problem for me?

Much of this antibiotic use is unnecessary\(^1\)

Amoxicillin use for these infections down 37-49% from 1995-2006; azithromycin up 6-9 fold, fluoroquinolones up 5 fold\(^2\)

Why is this happening?

“WE HAVE MET THE ENEMY AND HE IS US.”
Definition of Judicious Use

• Ensuring the antibiotic is used in the right circumstance, is being used at the right dose, and is given for the right duration-- Arjun Srinivasan, MD, Centers for Disease Control.
<table>
<thead>
<tr>
<th>Contributing Factor</th>
<th>Providers</th>
<th>Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lack of Education</td>
<td>Sub optimal approach to diagnosis and treatment; lack of knowledge of natural history of infection</td>
<td>Insufficient knowledge of viral vs. bacterial infections</td>
</tr>
<tr>
<td>Experience</td>
<td>Diagnostic and prescribing habits</td>
<td>Prior antibiotic treatment</td>
</tr>
<tr>
<td>Expectations</td>
<td>Belief that patients/parents expect antibiotics & satisfaction is related to prescription</td>
<td>Belief that some conditions require antibiotic therapy (and they don’t)</td>
</tr>
<tr>
<td>Economics</td>
<td>Time pressures; incentives linked to patient satisfaction; profiling on return visits</td>
<td>Need to return to work or return child to daycare</td>
</tr>
</tbody>
</table>

Belongia & Schwartz. 1998
Do they REALLY want antibiotics?

- 50-70% of parents have a pre-visit expectation of antibiotics
- Main reasons to see a physician (child w/ URTI) include:
 - Avoid complications (81%) & physical examination (78%)
 - Rx expectations: symptomatic Rx 50-65%; antibiotics 25%
- Equally satisfied with watch and wait vs. immediate treatment approach
- Patients given a contingency plan more satisfied

1—McCraig JAMA 2002
2—Shlomo BMC Fam Pract 2003
3—Chao Pediatrics 2008; McCormick Pediatrics 2004
4—Mangione-Smith 2001; Arch Pediatr Adolesc Med
What happens in the office

• Physicians more likely to prescribe if:
 • Parents offer possible diagnosis (otitis media; sinusitis)
 • Parents question diagnosis
 • Physicians perceive that the parents want antibiotics

• Positively framed symptomatic treatment recommendations met with more parental agreement

• If the physician states “rule out the need for antibiotics”—increased rate of questioning treatment plan
 • Delegitimize the parent concern
 • Reassurance perceived as minimizing symptoms

Mangione-Smith 2006
Guidelines…The highlights

- Rhinosinusitis
- Streptococcal Pharyngitis
- Community Acquired Pneumonia
- MRSA infections
- UTI
- Acute Otitis Media
Sinusitis

Upper respiratory tract infection

First line therapy: Amox-clavulonate
Streptococcal Pharyngitis-GAS

- Culture or rapid detection necessary to establish diagnosis
- Penicillin or Amoxicillin remain the drugs of choice
 - 10 days
 - PCN 2-3 times a day
 - Amoxicillin 1-2 times a day
- Group A Streptococcal carriers do not need treatment
- Tonsillectomy not recommended to reduce frequency of GAS infections
Community Acquired Pneumonia

- Influenza (+/- other respiratory viral testing) indicated
- No antibacterial treatment w/ proven influenza unless evidence for bacterial co-infection
- Chest X-ray for hospitalized patients
- No routine antibiotics in preschool children
- Amoxicillin for moderate CAP (and suspect bacterial infection)-outpatient
- Ampicillin for initial antibiotics hospitalized patients
- Macrolides for school age/adolescents of suspect M. pneumoniae infection
MRSA-Skin & Soft Tissue

- Drainage
- Antibiotics indicated if rapidly progressive, evidence of extensive disease or other risk factors
- Purulent cellulitis-target CA-MRSA—5-10 days
- Non purulent cellulitis-GAS treatment—5-10 days
- Recurrent disease difficult to manage
- Household treatment may reduce frequency of events
UTI

- Urine culture + urinalysis necessary for diagnosis
- Specimens from bag collection in appropriate
- >50,000 colony forming units of a single pathogen
- IV=oral
- 7-14 days…guided by local resistance patterns
- Febrile children with UTI should have bladder/renal ultrasound
- Routine VCUG not recommended
- Prophylactic antibiotics not recommended for VUR
Acute Otitis Media

• Diagnosis: moderate/severe TM bulging OR new onset otorrhea (no otitis externa); mild bulging + new ear pain or TM erythema

• Manage pain

<table>
<thead>
<tr>
<th>Severity</th>
<th>Age</th>
<th>Treatment*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe</td>
<td>>6 months</td>
<td>Amoxicillin</td>
</tr>
<tr>
<td>Bilateral non severe</td>
<td>6 mo-23 mo</td>
<td>Amoxicillin</td>
</tr>
<tr>
<td>Unilateral non severe</td>
<td>6 mo-23 mo</td>
<td>Amoxicillin or OBS</td>
</tr>
<tr>
<td>Non severe AOM</td>
<td>>24 mo</td>
<td>Amoxicillin or OBS</td>
</tr>
</tbody>
</table>

Treatment choices:
1st line = amoxicillin if no antibiotic w/in past 30 days
2nd line = b-lactamase coverage (e.g. Amoxicillin-clavulonate)
Otitis Externa

- Diagnostic Criteria: rapid onset (<48 hours) w/in the last 3 weeks, symptoms of ear canal inflammation & signs of ear canal inflammation
- Topical Therapy
 - Acetic Acid solution (w/ or w/o hydrocortisone)
 - Ciprofloxacin + hydrocortisone or dexamethasone
 - Neomycin, polymyxin, hydrocortisone
 - Ofloxacin
- Pain Management
- No systemic antimicrobials for uncomplicated otitis externa
Global Movement...

EUROPE’S FIGHT AGAINST

ANTIMICROBIAL RESISTANCE

WHAT IS ANTIMICROBIAL RESISTANCE (AMR)?

- **Antimicrobials:** Substances used to treat and prevent a wide range of infections in humans and animals. They work by interfering with the growth and development of bacteria or by destroying them.
- **Antimicrobial resistance:** The ability of microorganisms to withstand antimicrobial treatments. Resistance can develop in bacteria and other microorganisms due to use or misuse of antimicrobial substances.

OVERVIEW ON RESISTANCE LEVELS IN ANIMALS AND HUMANS

- Resistance levels in animals to specific microorganisms in Member States and EU.
- Levels of AMR in humans to specific antibiotics in EU.

HOW DOES EFSA FIGHT AMR?

- **Scientific support & advice:** EFSA provides scientific advice and support on antimicrobial resistance and resistance to antibiotics in food animals and zoonotic bacteria, and the impact of resistance to human health.
- **Through an integrated approach:** EFSA supports the development of integrated strategies to combat AMR, from policy and regulatory measures to public awareness campaigns.
- **Through close cooperation:** EFSA works closely with other international organizations to address the challenge of AMR, ensuring a coordinated approach to combat this global health threat.

GET SMART

- **Getting Smart on Antibiotics:** Tools and strategies for managing antimicrobial resistance.
- **Global Movement:** Collaboration to combat AMR and promote responsible use of antibiotics.

ANTIBIOTIC AWARENESS WEEK 2015

- **Preserve the Miracle:** No action today, no cure tomorrow.
- **Get Smart:** Know When Antibiotics Work on the Farm.
Talking Points

- Antibiotics are life-saving drugs
- Antibiotics only treat bacterial infections
- Some ear infections DO NOT require an antibiotic
- Most sore throats DO NOT require an antibiotic
- Green colored mucus is NOT a sign that an antibiotic is needed
- There are potential risks when taking any prescription drug